hig.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Collentine, Dennis
    et al.
    University of Gävle, Faculty of Education and Business Studies, Department of Business and Economic Studies, Economics. Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Futter, M. N.
    Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Realising the potential of natural water retention measures in catchment flood management: Trade-offs and matching interests2018In: Journal of Flood Risk Management, ISSN 1753-318X, E-ISSN 1753-318X, Vol. 11, no 1 (SI), p. 76-84Article in journal (Refereed)
    Abstract [en]

    Natural water retention measures (NWRM) are a multifunctional form of green infrastructure that can play an important role in catchment-scale flood risk management. While green infrastructure based on natural processes is increasingly recognised as being complementary to traditional flood control strategies based on grey infrastructure in urban areas, there are a number of outstanding challenges with their widespread uptake. At a catchment scale, it is widely accepted that NWRM in upstream areas based on the concept of ’keeping the rain where it falls’ can help reduce the risk of downstream flooding by enhancing or restoring natural hydrological processes including interception, evapotranspiration, infiltration, and ponding. However, both the magnitude of flood risk reduction and the institutional structures needed for widespread uptake of NWRM are inadequately understood. Implementing NWRM can involve trade-offs, especially in agricultural areas. Measures based on drainage management and short rotation forestry may help ’keep the rain where it falls’ but can result in foregone farm income. To identify situations where the implementation of NWRM may be warranted, an improved understanding of the likely reductions in downstream urban flood risk, the required institutional structures for risk management and transfer, and mutually acceptable farm compensation schemes are all needed.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf