hig.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ameen, Arman
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Choonya, Gasper
    Cehlin, Mathias
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Experimental Evaluation of the Ventilation Effectiveness of Corner Stratum Ventilation in an Office Environment2019In: Buildings, ISSN 2075-5309, E-ISSN 2075-5309, Vol. 9, no 7, article id 169Article in journal (Refereed)
    Abstract [en]

    An experimental study was conducted in a room resembling an office in a laboratory environment. The study involved investigating the ability of corner-placed stratum ventilation in order to evaluate the ventilation’s effectiveness and local thermal comfort. At fixed positions, the air temperature, air velocity, turbulence intensity, and tracer gas decay measurements were carried out. The results show that corner-placed stratum ventilation behaves very similar to a mixing ventilation system when considering air change effectiveness. The performance of the system was better at lower supply air flow rates for heat removal effectiveness. For the heating cases, the draught rates were all very low, with the maximum measured value of 12%. However, for the cooling cases, the maximum draught rate was 20% and occurred at ankle level in the middle of the room.

  • 2.
    Holmgren, Mattias
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental psychology.
    Sörqvist, Patrik
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental psychology.
    Are mental biases responsible for the perceived comfort advantage in "green" buildings?2018In: Buildings, ISSN 2075-5309, E-ISSN 2075-5309, Vol. 8, no 2, article id 20Article in journal (Refereed)
    Abstract [en]

    Previous research has shown that merely calling an indoor environment environmentally certified will make people favor that environment over a conventional alternative. In this paper we explore whether this effect depends on participants deliberately comparing the two environments, and whether different reasons behind the certification influence the magnitude of the effect. In Experiment 1, participants in a between-subjects design assigned higher comfort ratings to an indoor environment that had been labeled "environmentally certified" in comparison with the exact same indoor environment that was unlabeled, suggesting that the effect arises even when participants do not compare the two environments when making their estimates. The results from Experiment 2 indicate that climate change mitigation (as the reason for the certification) is a slightly better trigger of the effect compared to climate change adaptation. The results suggest that studies on psychological effects of "green" buildings should experimentally control for the influence from participants' judgmental biases.

  • 3.
    Wallhagen, Marita
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering.
    Eriksson, Ola
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering.
    Sörqvist, Patrik
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental psychology.
    Gender Differences in Environmental Perspectives among Urban Design Professionals2018In: Buildings, ISSN 2075-5309, E-ISSN 2075-5309, Vol. 8, no 4, article id 59Article in journal (Refereed)
    Abstract [en]

    Urban design professionals are key actors in early design phases and have the possibility to influence urban development and direct it in a more sustainable direction. Therefore, gender differences in environmental perspectives among urban design professionals may have a marked effect on urban development and the environment. This study identified gender differences in environment-related attitudes among urban design professionals involved in the international architectural competition 'A New City Centre for Kiruna' in northern Sweden. Participants' self-rated possibility to influence environmental aspects was higher for males than for females. Conversely, the importance placed on environmental aspects had higher ratings among females, although the differences regarding the rating of personal responsibilitywere small. The gap between the participants' self-rated belief in their ability to influence and rated importance of environmental aspects was larger among female participants. Females placed great importance on environmental aspects even though they felt that their possibility to influence these was rather low. Conversely, male participants felt that they had the greatest possibility to influence, although some males rated the importance of environmental aspects thelowest. The gender differences identified are important froman equality and environmental perspective as they may influence pro-environmental behavior among urban design professionals and ultimately influence the environmental performance of the built environment.

  • 4.
    Wallhagen, Marita
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering. KTH, MIljöstrategisk Analys - fms.
    Glaumann, Mauritz
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering. KTH Royal Institute of Technology, School of Architecture and the Built Environment,, Division of Environmental Strategies Research, Department of Urban Studies, Environmental Strategies Research - fms.
    Eriksson, Ola
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering.
    Westerberg, Ulla
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building engineering.
    Framework for Detailed Comparison of Building Environmental Assessment Tools2013In: Buildings, ISSN 2075-5309, E-ISSN 2075-5309, Vol. 3, no 1, p. 39-60Article in journal (Refereed)
    Abstract [en]

    Understanding how Building Environmental Assessments Tools (BEATs) measure and define “environmental” building is of great interest to many stakeholders, but it is difficult to understand how BEATs relate to each other, as well as to make detailed and systematic tool comparisons. A framework for comparing BEATs is presented in the following which facilitates an understanding and comparison of similarities and differences in terms of structure, content, aggregation, and scope. The framework was tested by comparing three distinctly different assessment tools; LEED-NC v3, Code for Sustainable Homes (CSH), and EcoEffect. Illustrations of the hierarchical structure of the tools gave a clear overview of their structural differences. When using the framework, the analysis showed that all three tools treat issues related to the main assessment categories: Energy and Pollution, Indoor Environment, and Materials and Waste. However, the environmental issues addressed, and the parameters defining the object of study, differ and, subsequently, so do rating, results, categories, issues, input data, aggregation methodology, and weighting. This means that BEATs measure “environmental” building differently and push “environmental” design in different directions. Therefore, tool comparisons are important, and the framework can be used to make these comparisons in a more detailed and systematic way.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf