hig.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Boustedt, Jonas
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Computer science.
    Students' different understandings of class diagrams2012In: Computer Science Education, ISSN 0899-3408, E-ISSN 1744-5175, Vol. 22, no 1, p. 29-62Article in journal (Refereed)
    Abstract [en]

    The software industry needs well-trained software designers and one important aspect of software design is the ability to model softwaredesigns visually and understand what visual models represent. However, previous research indicates that software design is a difficulttask to many students. This article reports empirical findings from aphenomenographic investigation on how students understand classdiagrams, Unified Modeling Language (UML) symbols, and relationsto object-oriented (OO) concepts. The informants were 20 Computer Science students from four different universities in Sweden. The results show qualitatively different ways to understand and describe UML class diagrams and the ‘‘diamond symbols’’ representing aggregation and composition. The purpose of class diagrams was understood in a varied way, from describing it as a documentation to a more advanced view related to communication. The descriptions of class diagrams varied from seeing them as a specification of classes to a more advanced view, where they were described to show hierarchic structures of classes and relations. The diamond symbols were seen as ‘‘relations’’ and a more advanced way was seeing the white and theblack diamonds as different symbols for aggregation and composition. As a consequence of the results, it is recommended that UML should be adopted in courses. It is briefly indicated how the phenomenographic results in combination with variation theory can be used by teachers to enhance students’ possibilities to reach advanced understanding of phenomena related to UML classdiagrams. Moreover, it is recommended that teachers should put more effort in assessing skills in proper usage of the basic symbols and models and students should be provided with opportunities to practise collaborative design, e.g. using whiteboards.

  • 2.
    Boustedt, Jonas
    University of Gävle, Department of Mathematics, Natural and Computer Sciences, Ämnesavdelningen för datavetenskap.
    Students' Understanding of the Concept of Interface in a Situated Context2009In: Computer Science Education, ISSN 0899-3408, E-ISSN 1744-5175, Vol. 19, no 1, p. 15-36Article in journal (Refereed)
    Abstract [en]

    The paper describes an empirical study with the aim of producing insights about how students experience programming and software engineering. The research aims to investigate the students’ world, and hence, we have chosen a phenomenographic approach. Our questions focus on the students’ experience of concepts related to a realistic programming task in an extensive software system, particularly the Java Interface. The results show that there is a distinct variation of descriptions spanning from a concrete to-do list to a more advanced description where the interface plays a crucial role in order to produce dynamic and adaptive systems. We interpret the results and suggest how they can be used in teaching to provide an extended and varied understanding for how to work with advanced software.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf