hig.sePublikasjoner
Endre søk
Begrens søket
1 - 1 of 1
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Wang, Xiaoqin
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för elektroteknik, matematik och naturvetenskap, Matematik.
    Yin, Li
    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
    New g-formula for the sequential causal effect and blip effect of treatment in sequential causal inference2020Inngår i: Annals of Statistics, ISSN 0090-5364, E-ISSN 2168-8966, Vol. 48, nr 1, s. 138-160Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In sequential causal inference, two types of causal effects are of practical interest, namely, the causal effect of the treatment regime (called the sequential causal effect) and the blip effect of treatmenton on the potential outcome after the last treatment. The well-known G-formula expresses these causal effects in terms of the standard paramaters. In this article, we obtain a new G-formula that expresses these causal effects in terms of the point observable effects of treatments similar to treatment in the framework of single-point causal inference. Based on the new G-formula, we estimate these causal effects by maximum likelihood via point observable effects with methods extended from single-point causal inference. We are able to increase precision of the estimation without introducing biases by an unsaturated model imposing constraints on the point observable effects. We are also able to reduce the number of point observable effects in the estimation by treatment assignment conditions.

    Fulltekst (pdf)
    AOS1795.pdf
    Fulltekst (pdf)
    AOS1795 Supplementary Material.pdf
1 - 1 of 1
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf