Harmonic amoebas are generalisations of amoebas of algebraic curves immersed in complex tori. Introduced by Krichever in 2014, the consideration of such objects suggests to enlarge the scope of tropical geometry. In the present paper, we introduce the notion of harmonic morphisms from tropical curves to affine spaces and show how these morphisms can be systematically described as limits of families of harmonic amoeba maps on Riemann surfaces. It extends previous results about approximation of tropical curves in affine spaces and provides a different point of view on Mikhalkin's approximation Theorem for regular phase-tropical morphisms, as stated e.g. by Mikhalkin in 2006. The results presented here follow from the study of imaginary normalised differentials on families of punctured Riemann surfaces and suggest interesting connections with compactifications of moduli spaces.
In this note, we make a step towards the classification of toric surfaces admitting reducible Severi varieties. We provide two families of toric surfaces admitting reducible Severi varieties. The first family is general, and is obtained by a quotient construction. The second family is exceptional, and corresponds to certain narrow polygons, which we call kites. We introduce two types of invariants that distinguish between the components of the Severi varieties, and allow us to provide lower bounds on the numbers of the components. The sharpness of the bounds is verified in some cases, and is expected to hold in general for ample enough linear systems. In the appendix, we establish a connection between the Severi problem and the topological classification of univariate polynomials.