Alpine and polar regions are predicted to be among the most vulnerable to changes in temperature, precipitation, and nutrient availability. We carried out a seven-year factorial experiment with warming and nutrient addition in two alpine vegetation communities. We analyzed the relationship between fruit production and monthly mean, maximum, and min temperatures during the fall of the pre-fruiting year, the fruiting summer, and the whole fruit production period, and measured the effects of precipitation and growing and thawing degree days (GDD & TDD) on fruit production. Nutrient addition (heath: 27.88 ± 3.19 fold change at the end of the experiment; meadow: 18.02 ± 4.07) and combined nutrient addition and warming (heath: 20.63 ± 29.34 fold change at the end of the experiment; meadow: 18.21 ± 16.28) increased total fruit production and fruit production of graminoids. Fruit production of evergreen and deciduous shrubs fluctuated among the treatments and years in both the heath and meadow. Pre-maximum temperatures had a negative effect on fruit production in both communities, while current year maximum temperatures had a positive impact on fruit production in the meadow. Pre-minimum, pre-mean, current mean, total minimum, and total mean temperatures were all positively correlated with fruit production in the meadow. The current year and total precipitation had a negative effect on the fruit production of deciduous shrubs in the heath. GDD had a positive effect on fruit production in both communities, while TDD only impacted fruit production in the meadow. Increased nutrient availability increased fruit production over time in the high alpine plant communities, while experimental warming had either no effect or a negative effect. Deciduous shrubs were the most sensitive to climate parameters in both communities, and the meadow was more sensitive than the heath. The difference in importance of TDD for fruit production may be due to differences in snow cover in the two communities. © 2022 The Authors
Global warming is expected to have large impacts on high alpine and Arctic ecosystems in the future. Here we report effects of 18 years of experimental warming on two contrasting high alpine plant communities in subarctic Sweden. Using open-top chambers, we analysed effects of long-term passive experimental warming on a heath and a meadow. We determined the impact on species composition, species diversity (at the level of rare, common and dominant species), and phylogenetic and functional diversity. Long-term warming drove differentiation in species composition in both communities; warmed plots, but not control plots, had distinctly different species composition in 2013 compared with 1995. Beta diversity increased in the meadow, while it decreased in the heath. Long-term warming had significant negative effects on the three orders of phylogenetic Hill diversity in the meadow. There was a similar tendency in the heath, but only phylogenetic diversity of dominant species was significantly affected. Long-term warming caused reductions in forbs in the heath, while evergreen shrubs increased. In the meadow, deciduous and evergreen shrubs showed increased abundance from 2001 to 2013 in warmed plots. Responses in species and phylogenetic diversity to experimental warming varied over both time (medium (7 years) vs long-term (18 years)) and space (between two neighbouring plant communities). The meadow community was more negatively affected in terms of species and phylogenetic diversity than the heath community. A potential driver for the changes in the meadow may be decreased soil moisture caused by long-term warming. © 2021
Premise: Climate change is having major impacts on alpine and arctic regions, and inter-annual variations in temperature are likely to increase. How increased climate variability will impact plant reproduction is unclear. Methods: In a 4-year study on fruit production by an alpine plant community in northern Sweden, we applied three warming regimes: (1) a static level of warming with open-top chambers (OTC), (2) press warming, a yearly stepwise increase in warming, and (3) pulse warming, a single-year pulse event of higher warming. We analyzed the relationship between fruit production and monthly temperatures during the budding period, fruiting period, and whole fruit production period and the effect of winter and summer precipitation on fruit production. Results: Year and treatment had a significant effect on total fruit production by evergreen shrubs, Cassiope tetragona, and Dryas octopetala, with large variations between treatments and years. Year, but not treatment, had a significant effect on deciduous shrubs and graminoids, both of which increased fruit production over the 4 years, while forbs were negatively affected by the press warming, but not by year. Fruit production was influenced by ambient temperature during the previous-year budding period, current-year fruiting period, and whole fruit production period. Minimum and average temperatures were more important than maximum temperature. In general, fruit production was negatively correlated with increased precipitation. Conclusions: These results indicate that predicted increased climate variability and increased precipitation due to climate change may affect plant reproductive output and long-term community dynamics in alpine meadow communities. © 2021 The Authors. American Journal of Botany published by Wiley Periodicals LLC on behalf of Botanical Society of America
Climate change is expected to affect alpine and Arctic tundra communities. Most previous long-term studies have focused on impacts on vascular plants, this study examined impacts of long-term warming on bryophyte communities. Experimental warming with open-top chambers (OTCs) was applied for 18 years to a mesic meadow and a dry heath alpine plant community. Species abundance was measured in 1995, 1999, 2001 and 2013. Species composition changed significantly from original communities in the heath, but remained similar in mesic meadow. Experimental warming increased beta diversity in the heath. Bryophyte cover and species richness both declined with long-term warming, while Simpson diversity showed no significant responses. Over the 18-year period, bryophyte cover in warmed plots decreased from 43 % to 11 % in heath and from 68 % to 35 % in meadow (75 % and 48 % decline, respectively, in original cover), while richness declined by 39 % and 26 %, respectively. Importantly, the decline in cover and richness first emerged after 7 years. Warming caused significant increase in litter in both plant communities. Deciduous shrub and litter cover had negative impact on bryophyte cover. We show that bryophyte species do not respond similarly to climate change. Total bryophyte cover declined in both heath and mesic meadow under experimental long-term warming (by 1.5-3 °C), driven by general declines in many species. Principal response curve, cover and richness results suggested that bryophytes in alpine heath are more susceptible to warming than in meadow, supporting the suggestion that bryophytes may be less resistant in drier environments than in wetter habitats. Species loss was slower than the decline in bryophyte abundance, and diversity remained similar in both communities. Increased deciduous shrub and litter cover led to decline in bryophyte cover. The non-linear response to warming over time underlines the importance of long-term experiments and monitoring. © 2020 The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company.