hig.sePublications
Change search
Refine search result
1234 1 - 50 of 185
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Albuquerque, Daniel P.
    et al.
    Universidade de Lisboa.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Linden, P. F.
    University of Cambridge.
    Carrilho da Graça, Guilherme
    Universidade de Lisboa.
    Experimental and numerical investigation of pumping ventilation on the leeward side of a cubic building2020In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 179, article id 106897Article in journal (Refereed)
    Abstract [en]

    Unstable interaction between shear layers that form in the wake of an isolated building exposed to wind can drive natural pumping ventilation in windward and leeward facing rooms with two or more horizontally separated openings. This paper presents an experimental and numerical study of pumping ventilation in a three-story cubic building with two leeward openings in its middle floor. Reduced-scaled measurements were performed in the University of Gävle atmospheric-boundary-layer wind tunnel. The ventilation mechanism was investigated using smoke visualization, hot wire anemometry and particle image velocimetry. Effective ventilation rates were obtained using a tracer gas decay method. Experimental results confirmed that pumping ventilation is a 3D oscillatory unstable phenomenon with periodic behavior over several oscillation cycles. Measured flowrates show a linear relation between the effective ventilation rate and window separation. The numerical simulations used two turbulence modeling approaches: unsteady Reynolds-averaged Navier-Stokes (URANS) and large eddy simulation (LES). Both URANS and LES could predict vortex shedding frequency with an error below 5%. LES showed a good agreement with the measured ventilation rates, with an error below 10%, while URANS underestimated ventilation rates by at least 40%. The ventilation efficiency, obtained by LES, ranged between 0.60 and 0.75 (for the case with larger window separation). The results show that LES may be a suitable simulation approach for pumping ventilation. In contrast, URANS cannot simulate pumping ventilation.

  • 2.
    Albuquerque, Daniel
    et al.
    Universidade de Lisboa, Portugal.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Linden, Paul
    University of Cambridge, UK.
    da Graca, Guilherme Carrilho
    Universidade de Lisboa, Portugal.
    LES simulation of oscillating natural ventilation driven by vortex shedding in isolated buildings2020In: Proceedings of Building Simulation 2019: 16th Conference of IBPSA / [ed] Corrado et al., IBPSA , 2020, p. 644-649, article id 11456Conference paper (Refereed)
    Abstract [en]

    A recently published study presented a new type of natural ventilation (NV) flow, named pumping ventilation. The oscilatory mechanism of vortex shedding that occurs at the wake region of an isolated building drives this new type of ventilation in rooms with two (or more) openings facing the leeward or windward side of an isolated building. This paper presents a validated Large Eddy Simulation (LES) study of oscillating/pumping NV in an isolated building using three different separations (s') between its two windows. LES is validated using an experimental database from measurements performed at the University of Gavle boundary layer wind tunnel (WT). The measurements use a cubic model with 0.45m side representing a three-story building at a 1/20 scale that allows the use of bottom-hung windows. LES results show a good agreement with the measured non-dimensional ventilation rates. A dimensionless analysis shows the dominant frequencies of the pumping flow, are close to the Strouhal frequency.

  • 3.
    Andersson, Daniel
    et al.
    Radarbolaget.
    Björsell, Niclas
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electronics, Mathematics and Natural Sciences, Electronics.
    Ottoson, Patrik
    Radarbolaget.
    Rönnow, Daniel
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electronics, Mathematics and Natural Sciences, Electronics.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Radar Images of Leaks in Building Elements2015In: Energy Procedia, ISSN 1876-6102, Vol. 78, p. 1726-1731Article in journal (Refereed)
    Abstract [en]

    Through leakage in the building envelope there is a penetration of air, water vapor and particles. The degree of leakage of air can be quantified by existing methods. However, the location of adventitious openings is often not known. In order to overcome the limitations in existing methods, a non-contact and non-destructive method based on ultra-wide bandwidth radar technology is suggested. A test-bed is designed that can measure with different polarization to be able to detect flaws in different directions. Initial measurements shows promising results for further development of the method of using radar images to find leaks in building elements.

  • 4.
    Antoniou, Nestoras
    et al.
    Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus; Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands.
    Montazeri, Hamid
    Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Civil Engineering, KU Leuven, Leuven, Belgium.
    Wigö, Hans
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Neophytou, Marina
    Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus.
    Blocken, Bert
    Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Civil Engineering, KU Leuven, Leuven, Belgium.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    CFD and wind-tunnel analysis of outdoor ventilation in a real compact heterogeneous urban area: evaluation using “air delay”2017In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 126, p. 355-372Article in journal (Refereed)
    Abstract [en]

    Outdoor urban ventilation in a real complex urban area is investigated by introducing a new ventilation indicator – the "air delay". Computational Fluid Dynamics (CFD) simulations are performed using the 3D steady Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) approaches. The up-to-date literature shows the lack of detailed evaluations of the two approaches for real compact urban areas. This study further presents a systematic evaluation of steady RANS and LES for the assessment of the ventilation conditions in a dense district in Nicosia, Cyprus. The ventilation conditions within the urban area are investigated by calculating the distribution of the age of air. To better assess the outdoor ventilation, a new indicator, the "air delay" is introduced as the difference between the local mean age of air at an urban area and that in an empty domain with the same computational settings, allowing the comparison of the results in different parts of the domain, without impact of the boundary conditions. CFD results are validated using wind-tunnel measurements of mean wind speed and turbulence intensity performed for the same urban area. The results show that LES can accurately predict the mean wind speed and turbulence intensity with the average deviations of about 6% and 14%, respectively, from the wind-tunnel measurements while for the steady RANS, these are 8% and 31%, respectively. The steady RANS simulations overestimate the local mean air delay. The deviation between the two approaches is 52% at pedestrian level (2 m).

  • 5.
    Blomqvist, Claes
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    A Note on Air Movements through Horizontal Openings in Buildings2002In: The 8th International Conference on Air Distribution in Rooms: Individual Controlled Environment, 2002Conference paper (Refereed)
  • 6.
    Blomqvist, Claes
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Air Movements through Horizontal Openings in Buildings: A Model Study2004In: The International Journal of Ventilation, ISSN 1473-3315, E-ISSN 2044-4044, Vol. 3, no 1, p. 1-10Article in journal (Refereed)
    Abstract [en]

    A building contains a number of large openings like doors and staircases. When the temperature of the spaces connected by these openings differs, the difference in density will cause air movements through them. Horizontal air movements through vertical openings in buildings like doors and windows are well investigated while studies of air movements through horizontal openings like stairwells are less frequent and therefore this work is focusing on this case.

    The paper reports on an experimental study of the possibility of using buoyancy forces to distribute air and heat through horizontal openings. The experiments have been carried out in a scale model with water as the operating fluid.

    The result of the study shows that the flow rate through a horizontal opening is roughly half of the flow rate through a vertical opening for the same conditions, probably caused by the more complex flow pattern in the horizontal opening. A staircase below the horizontal opening will guide the flow somewhat and will cause a small increase of the fluid exchange through the opening.

  • 7.
    Blomqvist, Claes
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Measurements and Control of Air Movements within a Building1997In: AIVC 18th Conference, proceedings of "Ventilation and Cooling", 1997, p. 427-436Conference paper (Other academic)
    Abstract [en]

    There are a number of methods available concerning with distribution of air in buildings. Within control research, one can find new control algorithms which have not yet been used in practice. These new algorithms open the possibility of developing and implementing of new demand controlled ventilation systems.

    In a building the internal air motions are due both to differences in temperature and pressure differences caused by the ventilation system. Therefore, one fundamental question is to what extent it s possible to control the air motions within a building using fan powered ventilation in combination with temperature control.

    The aims of this paper is to report on measurements done to examine the influence of temperature differences between rooms on the air exchange through open doors in a building and to explore the use of modern control technique to minimise the temperature difference.

    The result of the measurements shows that even very small (0.1-0.2°C) temperature differences between rooms cause bi-directional air flows in the doorways of a magnitude that exceed the flow rates caused by the mechanical ventilation system. Therefore it is necessary to control the temperatures in the rooms to make it possible for the ventilation system to distribute the air to those parts of the building where it is needed.

  • 8.
    Blomqvist, Claes
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Spread of Gravity Currents in Multi Room Buildings2000In: The 7th International Conference on Air Distribution in Rooms: Ventilation for Health and Sustainable Environment, 2000Conference paper (Refereed)
  • 9. Blomqvist, Claes
    et al.
    Sandberg, Mats
    KTH, Inst för byggd miljö.
    To what extent can one with mechanical ventilation control the air motions within a building1996In: ROOMVENT'96: 5th International Conference on Air Distribution in Rooms, 1996, p. vol 1 265-272Conference paper (Other academic)
    Abstract [en]

    There are a number of methods available concerning with air distribution in buildings. Within control research, one can find new control algorithms which have not been used in practice yet. These new algorithms open the possibility of developing and implementing of new demand controlled ventilation systems.

    In a building the internal air motions are due both to differences in temperature and due to pressure differences induced by the ventilation system. Therefore, one fundamental question is to what extent one can with fan powered ventilation control the air motions within a building.

    The aims of this paper is to report on development of methods to study the air motions in a multi room residence apartment using various combinations of exhaust and supply air management. The experimental work includes measurements of air flow rates in door openings in both directions and use of various tracer gas methods to determine the supply air flow to each room, and identifying flow paths.

    In an accompanying paper (Björsell 1996) is reported on the results from a simulation of the performance of different control algorithms.

  • 10.
    Blomqvist, Claes
    et al.
    KTH, Inst för byggd miljö.
    Sandberg, Mats
    KTH, Inst för byggd miljö.
    Transition from Bi-directional to Unidirectional Flow in a Doorway1998In: ROOMVENT '98 : proceedings: 6th International Conference on Air Distribution in Rooms / [ed] Elisabeth Mundt, Tor-Göran Malmström, Stockholm, 1998, p. vol 2, 539-546Conference paper (Refereed)
    Abstract [en]

    The air flow in a doorway is governed by density difference caused by temperature difference and pressure difference caused by mechanical ventilation. Tests have been carried out in a unique indoor test house where the room to room to temperature difference could be controlled very accurately with a new control system. In addition to these tests some tests were carried out in a scale model with water as the operating fluid. Two main criteria of unidirectional flow in a doorway have been explored:

     

    1a.     The recorded mean velocity is unidirectional

    1b.     The neutral height is equal to the height of the door

    2.       Unidirectional flow in the sense that

     

    there is no transfer of contaminant from one room to another. To explore condition one the velocity profile in the doorway have been recorded by transversing the door opening. Condition two has been explored by using tracer gas technique.

  • 11. Brinkworth, BJ
    et al.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    A validated procedure for determining the buoyancy-induced flow in ducts2005In: Building Services Engineering Research & Technology, ISSN 0143-6244, E-ISSN 1477-0849, Vol. 26, no 1, p. 35-48Article in journal (Refereed)
    Abstract [en]

    A procedure is set out for calculating the buoyant flow induced in a duct with heat input at the wall, as in the cooling ducts used behind photovoltaic arrays. In these, buoyancy is opposed by various pressure losses, due to obstructions at the inlet and outlet, fluid friction at the walls and structural support members passing transversely through the duct. New methods are developed for calculating these losses, and each is validated separately by tests in a purpose-built isothermal rig. Measurements are also reported for some further losses, not yet amenable to calculation, due to nets and hoods at the duct ends, as might be used to exclude rain and wildlife. Finally, the whole procedure is validated by measurement of a duct with one heated wall.

    Practical application: Verified by measurements at every stage of its development, the method reported gives greater confidence in the routine calculation of the flow induced in ductwork where there is heat gain, as in systems for PV cooling and natural ventilation. The new treatments given for the hydrodynamic losses at basic components apply wherever these are used in the field of HEVAC.

  • 12. Brinkworth, BJ
    et al.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Design procedure for cooling ducts to minimise efficiency loss due to temperature rise in PV arrays2006In: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 80, no 1, p. 89-103Article in journal (Refereed)
    Abstract [en]

    The principal variable to be fixed in the design of a PV cooling duct is its depth, and hence the hydraulic diameter of its cross-section D. Analysis of the flow and heat transfer in the duct under still-air (buoyant flow) conditions, when the temperature rise is greatest, is validated by measurements on a full-scale test rig. It is shown that there is an optimum value of this design variable, such that for an array of length L the minimum temperature occurs when the ratio L/D is about 20. The optimum value is not affected much by other quantities, including the slope of the array.

    In practical situations, the flow is obstructed by devices across the duct inlet and outlet to exclude insects, birds and rain, and by structural support members crossing the duct interior. It is shown that the latter are no cause for concern, since the effect of the reduction in the flow-rate due to their presence is more than offset by an increase in heat transfer through additional turbulent mixing.

    It is also shown that array temperatures are strongly reduced by wind effects, which increase both the heat lost from the front surface of the array and by enhancement of the flow in the duct. Though the trends are clear, limitations are encountered in the present state of knowledge in both areas. (c) 2005 Elsevier Ltd. All rights reserved.

  • 13.
    Broström, Tor
    et al.
    Gotland University, Department of Building Conservation.
    Linden, Elisabet
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Lindström, Svante
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Mattsson, Magnus
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Convective heating in a medieval church: Effects of air-to-air heat pumps on air movements, particle deposition and temperature distribution2009Conference paper (Refereed)
    Abstract [en]

    In Europe many historic buildings use direct electric heating. Air-to-air heat pumps are an interesting alternative, in particular for conservation heating.  However, the convective heating may accelerate soiling of walls and artefacts by increasing the velocity and turbulence.

     

    The objective of the present paper is to discuss the general problem, the methodology for studying air motions and temperature distribution, and to present the results from a case study where air-to-air heat pumps and bench heaters were used for heating in a medieval church. The temperatures, velocities and humidity in the church have been measured for four different heating modes.

     

    The present study does not indicate any major disadvantages of using heat pumps for background heating in stone churches of the studied kind. More detailed long term studies are needed to ascertain the effects over time.

  • 14.
    Buccoliere, Riccardo
    et al.
    Universita di Lecce.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Study of the effect of building density and overall shape of a city on pollutant dispersion by combination of wind tunnel experiments and CFD simulations2008In: Proc. 12th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 2008Conference paper (Refereed)
  • 15.
    Buccoliere, Riccardo
    et al.
    Universita di Lecce.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Di Sabatino, Silvana
    Universita di lecce.
    An application of ventilation efficiency concepts to the analysis of building density effects on urban flow and pollutant concentration2011In: International Journal of Environment and Pollution, ISSN 0957-4352, E-ISSN 1741-5101, Vol. 47, no 1-4, p. 248-256Article in journal (Refereed)
  • 16.
    Buccoliere, Riccardo
    et al.
    Univ Salento, Dipartimento Sci Mat, Lecce, Italy, and Univ Ca Foscari Venezia, Dipartimento Informat, Venice, Italy.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Di Sabatino, Silvana
    Univ Salento, Dipartimento Sci Mat, Lecce, Italy .
    City breathability and its link to pollutant concentration distribution within urban-like geometries2010In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 44, no 15, p. 1894-1903Article in journal (Refereed)
    Abstract [en]

    This paper is devoted to the study of pollutant concentration distribution within urban-like geometries. By applying efficiency concepts originally developed for indoor environments, the term ventilation is used as a measure of city “breathability”. It can be applied to analyse pollutant removal within a city in operational contexts. This implies the evaluation of the bulk flow balance over the city and of the mean age of air. The influence of building packing density on flow and pollutant removal is, therefore, evaluated using those quantities. Idealized cities of regular cubical buildings were created with packing density ranging from 6.25% to 69% to represent configurations from urban sprawl to compact cities. The relative simplicity of these arrangements allowed us to apply the Computational Fluid Dynamics (CFD) flow and dispersion simulations using the standard k turbulence model. Results show that city breathability within the urban canopy layer is strongly dependent from the building packing density. At the lower packing densities, the city responds to the wind as an agglomeration of obstacles, at larger densities (from about 44%) the city itself responds as a single obstacle. With the exception of the lowest packing density, airflow enters the array through lateral sides and leaves throughout the street top and flow out downstream. The air entering through lateral sides increases with increasing packing density.

    At the street top of the windward side of compact building configurations, a large upward flow is observed. This vertical transport reduces over short distance to turn into a downward flow further downstream of the building array. These findings suggest a practical way of identifying city breathability. Even though the application of these results to real scenarios require further analyses the paper illustrates a practical framework to be adopted in the assessment of the optimum neighbourhood building layout to minimize pollution levels.

  • 17.
    Buccolieri, R.
    et al.
    Dipartimento di Informatica, Università Ca' Foscari Venezia, Mestre-Venezia, Italy; Dipartimento di Scienza Dei Materiali, University of Salento, Lecce, Italy.
    Sartoretto, F.
    Dipartimento di Informatica, Università Ca' Foscari Venezia, Mestre-Venezia, Italy.
    Giacometti, A.
    Dipartimento di Scienza Dei Materiali, University of Salento, Lecce, Italy.
    Di Sabatino, S.
    Dipartimento di Scienza Dei Materiali, University of Salento, Lecce, Italy.
    Leo, L.
    Dipartimento di Scienza Dei Materiali, University of Salento, Lecce, Italy.
    Pulvirenti, B.
    Dipartimento di Ingegneria Energetica, Nucleare e Del Controllo Ambientale, University of Bologna, Bologna, Italy.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Wigö, Hans
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Flow and pollutant dispersion within the Canal Grande channel in Venice (Italy) via CFD techniques2010In: HARMO 2010 - Proceedings of the 13th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes / [ed] Albergel, A., 2010, p. 760-764Conference paper (Refereed)
    Abstract [en]

    The present paper is aimed at the analysis of flow and pollutant dispersion in a portion of the Canal Grande (Grand Canal) in Venice (Italy) by means of both Computational Fluid Dynamics (CFD) FLUENT simulations and wind tunnel experiments performed at the University of Gävle (Sweden). For this application, Canal Grande can be viewed as a sort of street canyon where the bottom surface is water and bus boat emissions are the major source of pollution. Numerical investigations were made to assess the effect of the water surface on air flow and pollutant concentrations in the atmosphere. One of the challenges has been to deal with the interface between two immiscible fluids which requires ad-hoc treatment of the wall in terms of the numerical scheme adopted and the grid definition which needs to be much finer than in typical numerical airflow simulations in urban street canyons. Preliminary results have shown that the presence of water at the bottom of the street canyon modifies airflow and turbulence structure with direct consequences on concentration distribution within the domain.

  • 18.
    Buccolieri, R.
    et al.
    Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy.
    Wigö, Hans
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Sabatino, S. D.
    Department of Physics and Astronomy, University of Bologna, Italy.
    On the drag force distribution over arrays of cubical buildings: Wind tunnel experiments2017In: HARMO 2017 - 18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Proceedings, Hungarian Meteorological Service , 2017, p. 384-388Conference paper (Refereed)
    Abstract [en]

    In this paper we discuss the distribution of drag force along aligned arrays of cubes of different packing density. The distribution is evaluated via wind tunnel measurements performed on individual cubes located along the middle column of the array using a balance provided by a standard load cell. Results are compared with the drag force estimated by a pressure-derived method and clearly show a change of the distribution of the drag force. The force is uniform at low packing densities, while mostly acting on first rows of the arrays at large packing densities. This work leaves room for research tailored to a better parameterization of urban effects in dispersion models.

  • 19.
    Buccolieri, Riccardo
    et al.
    Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento.
    Lin, Yuanyuan
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Wigö, Hans
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Drag force rose representing the interaction between urban geometries and wind2021In: 15th ROOMVENT (Roomvent 2020) virtual conference: Energy efficient ventilation for healthy future buildings, 2021, p. 85-88Conference paper (Refereed)
    Abstract [en]

    The drag force generated by aligned arrays of cubes of different packing density and exposed to different wind directions in a wind tunnel is discussed. Results allowed to build a drag force rose which shows that the drag force increases with increasing packing density till λp = 0.25 for any wind direction. It is also shown that, independent of the packing density, the drag force increases with increases deviation of WD from the perpendicularity.

  • 20.
    Buccolieri, Riccardo
    et al.
    Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Wigö, Hans
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Di Sabatino, Silvana
    Department of Physics and Astronomy, University of Bologna, Bologna, Italy.
    The drag force distribution within regular arrays of cubes and its relation to cross ventilation – Theoretical and experimental analyses2019In: Journal of Wind Engineering and Industrial Aerodynamics, ISSN 0167-6105, E-ISSN 1872-8197, Vol. 189, p. 91-103Article in journal (Refereed)
    Abstract [en]

    A novel set of wind tunnel measurements of the drag force and its spatial distribution along aligned arrays of cubes of height H and planar area index λ p (air gap between cubes) equal to 0.028 (5H) to 0.69 (0.2H) is presented and analysed. Two different types of measurements are compared: one type where the drag force is obtained using the standard load cell method, another type where the drag force is estimated by measuring the pressure difference between windward and the leeward façades. Results show that the drag force is nearly uniformly distributed for lower λ p (0.028 and 0.0625), it decreases up to 50% at the second row for λ p = 0.11, and it sharply decreases for larger λ p (from 0.25 to 0.69) where the force mostly acts on the first row. It follows that for the lowest λ p the drag force typically formulated as a drag area corresponds to the total frontal area of the array, whereas for large λ p the drag area corresponds to the area of the first row. By assessing the driving pressure for ventilation from the drag force, the analysis is extended to estimate the cross ventilation as an example of application of this type of measurements. 

  • 21.
    Buccolieri, Riccardo
    et al.
    Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy.
    Wigö, Hans
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Di Sabatino, Silvana
    Department of Physics and Astronomy, University of Bologna, Bologna, Italy.
    Direct measurements of the drag force over aligned arrays of cubes exposed to boundary-layer flows2017In: Environmental Fluid Mechanics, ISSN 1567-7419, E-ISSN 1573-1510, Vol. 17, no 2, p. 373-394Article in journal (Refereed)
    Abstract [en]

    Wind tunnel measurements of the total drag force for aligned arrays of cubes exposed to two different boundary-layer flows at three flow velocities are discussed. The drag force for eight different building packing densities λp (from 0.028 to 1) is measured with a standard load cell generating a novel dataset. Different λp are reproduced by increasing the number of buildings on the same lot area; this represents a real situation that an urban planner is faced with when a lot area of a given (fixed) size is allocated to the development of new built areas. It is assumed that the surrounding terrain is uniform and there is a transition from a given roughness (smooth) to a new roughness (rough). The approaching flow will adjust itself over the new surface within a distance that in general may be larger than the horizontal length covered by the array. We investigate the region where the flow adjustment occurs. The wide range of packing densities allowed us to analyse in detail the evolution of the drag force. The drag force increases with increasing packing densities until it reaches a maximum at an intermediate packing density (λp = 0.25 in our case) followed by a slight decrease at larger packing densities. The value of the drag force depends on the flow adjustment along the array which is evaluated by introducing the parameter “drag area” to retrieve information about the drag distribution at different λp. Results clearly suggest a change of the distribution of the drag force, which is found to be relatively uniform at low packing densities, while most of the force acts on first rows of the arrays at large packing densities. The drag area constitutes the basis for the formulation of a new adjustment length scale defined as the ratio between the volume of the air within the array and the drag area. The proposed adjustment length scale automatically takes into account the change in drag distribution along the array for a better parameterization of urban effects in dispersion models. 

  • 22.
    Carrilho da Graça, Guilherme
    et al.
    Universidade de Lisboa, Portugal.
    Albuquerque, Daniel P.
    Universidade de Lisboa, Portugal.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Linden, P. F.
    University of Cambridge, UK.
    Pumping ventilation of corner and single sided rooms with two openings2021In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 205, article id 108171Article in journal (Refereed)
    Abstract [en]

    Corner rooms with two or more open windows in perpendicular facades can be naturally ventilated in cross-ventilation or pumping ventilation. These two airflow regimes also occur in rooms with two openings in the same façade, in the form of single sided pumping or cross sided ventilation. This paper presents an experimental and numerical simulation study of the scale and occurrence of these two flow regimes for rooms in a rectangular building exposed to wind. Flow visualization and tracer gas measurement of effective airflow were performed in an atmospheric boundary layer wind tunnel using a rectangular model of a three-story building (1/20 scale) with a ventilated middle floor. Experimental results show that pumping ventilation occurs when the wind is perpendicular to the façade (single sided rooms) or aligned with the building corner (corner rooms). In addition to these two perfectly aligned wind directions, pumping also occurs for a range of incoming wind angles: ±19° for single sided; and ±9° for corner rooms. As a result, for isolated rectangular buildings that have, at least, one single sided and two corner rooms in each facade, pumping ventilation can potentially occur in two or more rooms for 62 % of incoming wind directions. To investigate the transition between steady cross-ventilation and unsteady pumping ventilation, three-dimensional computational fluid dynamics large eddy simulations were performed to obtain wind generated pressures in the ventilation openings. Results show that the transition from cross-ventilation to pumping occurs when the steady pressure becomes smaller than the unsteady component. These results are used to develop a pressure based simplified model for corner ventilation that can predict effective airflow from external wind generated pressures with an average error below 10.2 %. © 2021 Elsevier Ltd

  • 23.
    Cehlin, Mathias
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Ameen, Arman
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Claesson, Leif
    Wigö, Hans
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Lin, Yuanyuan
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Urban Morphology and City Ventilation2020Conference paper (Refereed)
    Abstract [en]

    The purpose of the paper is to examine the relation between urban morphology, wind direction and air flow rates. In the study a highly idealized city model was used consisting of a circular block divided into two or four equally large sectors. Wind tunnel experiments and CFD predictions have been conducted. The interaction between the atmospheric boundary layer and a city is considered to be both a function of the overall shape and the internal resistance to the flow caused by the friction when the wind flows over the urban surfaces. Flow along the streets is generated by pressure differences. In the wind tunnel, velocity measurements have been recorded in the streets at several points and pressure on the ground was registered in 400 points. The wind tunnel measurements were used to validate the CFD model. The CFD predictions provided complete flow and pressure fields for different configurations and wind directions. The flow balance is presented considering both the horizontal air flow and the vertical air flow (subsidence and updraft). Special attention was on the pressure distribution at ground level (pressure footprint), which is believed to provide valuable information that can be used for qualitative city ventilation analyses. 

  • 24.
    Cehlin, Mathias
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Lin, Yuanyuan
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Claesson, Leif
    Wallhagen, Marita
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Environmental Science.
    Towards benchmarking of urban air quality based on homogenous surface emission2023In: Results in Engineering (RINENG), ISSN 2590-1230, Vol. 20, article id 101617Article in journal (Refereed)
    Abstract [en]

    Here, it is presented a possible methodology and experimental model for benchmarking of air quality in cities. The concept behind the methodology is that a city’s inherent structure affects the potential for contaminant removal due to the resistance it poses to inflow. The approach is based on homogenous emission across the street surface network, representing a worst-case situation. Different levels of complexity can be used for benchmarking, making it valuable for evaluating different layouts. Additionally, an urban ventilation index suitable for these kinds of experimental studies has been suggested. 

    Download full text (pdf)
    fulltext
  • 25.
    Cehlin, Mathias
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Moshfegh, Bahram
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Measurements of air temperatures close to a low-velocity diffuser in displacement ventilation using an infrared camera2002In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 34, no 7, p. 687-698Article in journal (Refereed)
    Abstract [en]

    The near zone of supply air diffusers is very critical for the indoor climate. Complaints of draft are often associated with low-velocity diffusers in displacement ventilation because the air is discharged directly into the occupied zone. Today, the knowledge of the near zone of these air supply diffusers is insufficient, causing an increased need for better measuring methods and representation of the occupied zone.

    A whole-field measuring technique has been developed by the authors for visualization of air temperatures and airflow patterns over a large cross-section. In this particular whole-field method, air temperatures are measured with an infrared camera and a measuring screen placed in the airflow. The technique is applicable to most laboratory and field test environments. It offers several advantages over traditional techniques; for example, it can record real-time images within large areas and capture transient events.

    The purpose of this study was to conduct a parameter and error analysis of the proposed whole-field measuring method applied to a flow from a low-velocity diffuser in displacement ventilation. A model of the energy balance, for a solid measuring screen, was used for analyzing the influence of different parameters on the accuracy of the method. The analysis was performed with respect to the convective heat transfer coefficient, emissivity, screen temperature and surrounding surface temperatures.

    Theoretically, the temperature difference between the screen and the ambient air was found to be 0.2–2.4 °C for the specific delimitation in the investigation. However, after applying correction the maximum uncertainty of the predicted air temperature was found to vary between 0.62 and 0.98 °C, due to uncertainties in estimating parameters used in the correction. The maximum uncertainty can be reduced to a great extent by estimating the convective heat transfer coefficient more accurately and using a screen with rather low emissivity.

  • 26.
    Cehlin, Mathias
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för energi- och maskinteknik.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Computed tomography for indoor application2006In: The International Journal of Ventilation, ISSN 1473-3315, E-ISSN 2044-4044, Vol. 4, no 4, p. 349-364Article in journal (Refereed)
    Abstract [en]

    This paper deals with tomographic techniques for two-dimensional spatially resolved concentration measurements indoors. This represents a significant advance over the traditional point measuring method for mapping tracer gas and pollutants. Methods for recording of data are stressed as well as different types of tomographic reconstruction algorithms such as the Smooth Basis Function Minimization (SBFM) and the modified Low Third Derivative (LTDm) methods. Among the reconstruction algorithms available today, SBFM and LTDm are among the most promising. These algorithms show potential for reconstruction of gas concentration in rooms, since they are regularized to converge towards smooth concentration distributions. Using the LTD method and ‘snapshot’ configuration enables the examination and real-time monitoring of transient flows.

  • 27.
    Cehlin, Mathias
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för energi- och maskinteknik.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Computed Tomography for Indoor Applications2006In: The International Journal of Ventilation, ISSN 1473-3315, E-ISSN 2044-4044, Vol. 4, no 4, p. 349-364Article in journal (Other academic)
    Abstract [en]

    This paper deals with tomographic techniques for two-dimensional spatially resolved concentration measurements indoors. This represents a significant advance over the traditional point measuring method for mapping tracer gas and pollutants. Methods for recording of data are stressed as well as different types of tomographic reconstruction algorithms such as the Smooth Basis Function Minimization (SBFM) and the modified Low Third Derivative (LTDm) methods. Among the reconstruction algorithms available today, SBFM and LTDm are among the most promising. These algorithms show potential for reconstruction of gas concentration in rooms, since they are regularized to converge towards smooth concentration distributions. Using the LTD method and ‘snapshot’ configuration enables the examination and real-time monitoring of transient flows.

  • 28.
    Cehlin, Mathias
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för energi- och maskinteknik.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Time evolution of gravity currents discharged from low velocity diffusers2007In: Roomvent 2007, 2007, p. 61-70Conference paper (Refereed)
  • 29.
    Cehlin, Mathias
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för energi- och maskinteknik.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Time evolution of gravity currents discharged from low velocity diffusers2007In: Roomvent 2007: 10th International Conference on Air Distribution in Rooms, 13-15 June 2007, Helsinki, Finland, 2007, p. Vol. 3 61-70Conference paper (Refereed)
  • 30.
    Chen, L.
    et al.
    Sun Yat-sen University, China; Ministry of Education, China; The Hong Kong Polytechnic University, Hong Kong.
    Hang, J.
    Sun Yat-sen University, China; Ministry of Education, China; Guangdong Provincial Field Observation and Research Station for Climate Environment, China.
    Chen, G.
    Sun Yat-sen University, China; Ministry of Education, China; Guangdong Provincial Field Observation and Research Station for Climate Environment, China.
    Liu, S.
    Sun Yat-sen University, China; Ministry of Education, China.
    Lin, Y.
    Sun Yat-sen University, China; Ministry of Education, China.
    Mattsson, Magnus
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Ling, H.
    Sun Yat-sen University, China; Ministry of Education, China; Guangdong Provincial Field Observation and Research Station for Climate Environment, China.
    Numerical investigations of wind and thermal environment in 2D scaled street canyons with various aspect ratios and solar wall heating2021In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 190, article id 107525Article in journal (Refereed)
    Abstract [en]

    Optimizing urban ventilation is an effective way to improve urban air quality and thermal environment. For this purpose, under the validation of wind-tunnel experiments, flow regimes and micro thermal environment in typical reduced-canyon models with aspect ratios (AR) of 1.1, 2.4, 4 and 5.67 were investigated by CFD simulations using periodic boundary condition. ANSYS Fluent 15.0 with a solar ray tracing model and radiation model was performed to numerically study turbulence characteristics with wind-driven force and solar-heating conditions. Results revealed that, with wind-driven condition, a clockwise vortex existed in normal and deep street canyon (AR = 1.1 and 2.4) while two counter-rotating vortices appeared in extremely deep canyon (AR = 4 and 5.67). Moreover, different turbulence structures and air temperature distribution existed in canyons with different solar-heating conditions. When the leeward wall or ground was heated, the pedestrian-level velocity increased and street ventilation was strengthened compared to wind-driven condition for all AR values. Particularly, the single main vortex was strengthened (AR = 1.1 and 2.4), and the two-vortex structure in extremely deep canyons (AR = 4 and 5.67) changed to single-vortex structure. When the windward wall was heated, the clockwise main vortex at AR = 1.1 and 2.4 was deformed, and a new sub vortex gradually appeared near street bottom. Furthermore, at AR = 4 and 5.67, windward solar heating destroyed the two-vortex structure and slightly improved pollutant dilution capacity. This work implied that extremely deep street design with weak pedestrian-level ventilation should be avoided. It also provides a meaningful reference for urban planning.

  • 31.
    Chen, Lan
    et al.
    School of Amopheric Sciences, Sun Yat-sen University, HaiZhu, Guangzhou, China.
    Hang, Jian
    School of Amopheric Sciences, Sun Yat-sen University, HaiZhu, Guangzhou, China.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Claesson, Leif
    University of Gävle, Faculty of Engineering and Sustainable Development, BMG laboratory.
    Di Sabatino, Silvana
    Department of Physics and Astronomy - DIFA, ALMA MATER STUDIORUM - University of Bologna, Bologna, Italy.
    The Influence of Building Packing Densities on Flow Adjustment and City Breathability in Urban-like Geometries2017In: Procedia Engineering, ISSN 1877-7058, E-ISSN 1877-7058, Vol. 198, p. 758-769Article in journal (Refereed)
    Abstract [en]

    City breathability refers to the air exchange process between the flows above and within urban canopy layers (UCL) and that of in-canopy flow, measuring the potential of wind to remove and dilute pollutants, heat and other scalars in a city. Bulk flow parameters such as in-canopy velocity (Uc) and exchange velocity (UE) have been applied to evaluate the city breathability. Both wind tunnel experiments and computational fluid dynamics (CFD) simulations were used to study the flow adjustment and the variation of city breathability through urban-like models with different building packing densities. We experimentally studied some 25-row and 15-column aligned cubic building arrays (the building width B=72 mm and building heights H=B) in a closed-circuit boundary layer wind tunnel. Effect of building packing densities (λp=λf=0.11, 0.25, 0.44) on flow adjustment and drag force of each buildings were measured. Wind tunnel data show that wind speed decreases quickly through building arrays due to strong building drag. The first upstream building induces the strongest flow resistance. The flow adjustment length varies slightly with building packing densities. Larger building packing density produces lower drag force by individual buildings and attains smaller velocity in urban canopy layers, which causes weaker city breathability capacity. In CFD simulations, we performed seven test cases with various building packing densities of λp=λf=0.0625, 0.11, 0.25, 0.36, 0.44 and 0.56. In the cases of λp=λf=0.11, 0.25, 0.44, the simulated profiles of velocity and drag force agree with experiment data well. We computed Uc and UE, which represent horizontal and vertical ventilation capacity respectively. The inlet velocity at 2.5 times building height in the upstream free flow is defined as the reference velocity Uref. Results show that UE/Uref changes slightly (1.1% to 0.7%) but Uc/Uref significantly decreases from 0.4 to 0.1 as building packing densities rise from 0.0625 to 0.56. Although UE is induced by both mean flows and turbulent momentum flux across the top surface of urban canopy, vertical turbulent diffusion is found to contribute mostly to UE.

  • 32.
    Chen, Lan
    et al.
    School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, PR China.
    Hang, Jian
    School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Earth Climate and Environment System, Sun Yat-sen University, Guangzhou, PR China.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Claesson, Leif
    University of Gävle, Faculty of Engineering and Sustainable Development, BMG laboratory.
    Di Sabatino, Silvana
    University of Bologna, Bologna, Italy.
    Wigö, Hans
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    The impacts of building height variations and building packing densities on flow adjustment and city breathability in idealized urban models2017In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 118, p. 344-361Article in journal (Refereed)
    Abstract [en]

    Improving city breathability has been confirmed as one feasible measure to improve pollutant dilution in the urban canopy layer (UCL). Building height variability enhances vertical mixing, but its impacts remain not completely explored. Therefore, both wind tunnel experiments and computational fluid dynamic (CFD) simulations are used to investigate the effect of building height variations (six height standard deviations σH = 0%–77.8%) associated to building packing densities namely λp/λf = 0.25/0.375 (medium-density) and 0.44/0.67 (compact) on city breathability. Two bulk variables (i.e. the in-canopy velocity (UC) and exchange velocity (UE)) are adopted to quantify the horizontal and vertical city breathability respectively, which are normalized by the reference velocity (Uref) in the free flow, typically set at z = 2.5H0 where H0 is the mean building height. Both flow quantities and city breathability experience a flow adjustment process, then reach a balance. The adjustment distance is at least three times longer than four rows documented in previous literature. The medium-density arrays experience much larger UC and UE than the compact ones. UE is found mainly induced by vertical turbulent fluxes, instead of vertical mean flows. In height-variation cases, taller buildings experience larger drag force and city breathability than lower buildings and those in uniform-height cases. For medium-density and compact models with uniform height, the balanced UC/Uref are 0.124 and 0.105 respectively, moreover the balanced UE/Uref are 0.0078 and 0.0065. In contrast, the average UC/Uref in height-variation cases are larger (115.3%–139.5% and 125.7%–141.9% of uniform-height cases) but UE/Uref are smaller (74.4%–79.5% and 61.5%–86.2% of uniform-height cases) for medium-density and compact models. 

  • 33.
    Chung, Juyeon
    et al.
    Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan.
    Lim, Eunsu
    Faculty of Science and Engineering, Toyo University, Tokyo, Japan.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Ito, Kazuhide
    Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan.
    Returning and net escape probabilities of contaminant at a local point in indoor environment2017In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 125, p. 67-76Article in journal (Refereed)
    Abstract [en]

    The quantified recirculation of a contaminant in a local domain is an essential property of the ventilation efficiency in a room. The returning probability of a contaminant (α) generated in a local domain and its net escape probability (NEP) are essential information for understanding the structure of the contaminant concentration distribution in a room and for controlling the indoor air quality. Here, we propose the fundamental definitions of α and NEP and discuss their potential relation with the net escape velocity (NEV) concept. NEP is defined at a local point and/or local domain as the probability that a contaminant is exhausted directly through an exhaust outlet and does not re-circulate to the target local point/domain again. In a computational fluid dynamics (CFD) simulation, the minimum local domain in a room corresponds to the control volume (C.V.) of discretization; hence, NEP in a C.V. is assumed as the probability in a point without volume. In this study, the calculation results of α, NEP, and NEV distributions in a simple two-dimensional model room and a three-dimensional room with push-pull type ventilation system are demonstrated and discussed.

  • 34.
    de Rijke, Chris
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Macassa, Gloria
    University of Gävle, Faculty of Health and Occupational Studies, Department of Public Health and Sport Science, Public Health Science.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Jiang, Bin
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.
    Living Structure as an Empirical Measurement of City Morphology2020In: ISPRS International Journal of Geo-Information, ISSN 2220-9964, Vol. 9, no 11, article id 677Article in journal (Refereed)
    Abstract [en]

    Human actions and interactions are shaped in part by our direct environment. The studies of Christopher Alexander show that objects and structures can inhibit natural properties and characteristics; this is measured in living structure. He also found that we have better connection and feeling with more natural structures, as they more closely resemble ourselves. These theories are applied in this study to analyze and compare the urban morphology within different cities. The main aim of the study is to measure the living structure in cities. By identifying the living structure within cities, comparisons can be made between different types of cities, artificial and historical, and an estimation of what kind of effect this has on our wellbeing can be made. To do this, natural cities and natural streets are identified following a bottom-up data-driven methodology based on the underlying structures present in OpenStreetMap (OSM) road data. The naturally defined city edges (natural cities) based on intersection density and naturally occurring connected roads (natural streets) based on good continuity between road segments in the road data are extracted and then analyzed together. Thereafter, historical cities are compared with artificial cities to investigate the differences in living structure; it is found that historical cities generally consist of far more living structure than artificial cities. This research finds that the current usage of concrete, steel, and glass combined with very fast development speeds is detrimental to the living structure within cities. Newer city developments should be performed in symbiosis with older city structures as a whole, and the structure of the development should inhibit scaling as well as the buildings themselves.

    Download full text (pdf)
    fulltext
  • 35. Elvsén, Per-Åke
    et al.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Buoyant jet in ventilated rooms: velocity field, temperature field and airflow pattern analysed with three different whole field methods2009In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 44, no 1, p. 137-145Article in journal (Refereed)
  • 36.
    Elvsén, Per-Åke
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Particle Streak Velocimetry for Room Air Flows-Some Improvements2004In: Roomvent, 2004Conference paper (Refereed)
  • 37. Erell, E
    et al.
    Etizon, Y
    Carlstrom, N
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Molina, J
    Maestre, I
    Maldonado, E
    Leal, V
    Gutschker, O
    "SOLVENT": development of a reversible solar-screen glazing system2004In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 36, no 5, p. 467-480Article in journal (Refereed)
    Abstract [en]

    Preliminary experiments with a novel glazing system developed at the Desert Architecture and Urban Planning Unit of Ben-Gurion University of the Negev in Israel indicated that it may provide improved visual and thermal performance in buildings with large glazed areas located in sunny regions, regardless of orientation. In winter, it reduces glare, local over-heating and damage to furnishings caused by exposure to direct solar radiation, with only a small reduction in solar space heating. In summer, it reduces the penetration of unwanted radiation without obstructing the view through the window, to an extent that may render external shading devices unnecessary. The SOLVENT project was contracted to complete the development of the glazing system, which is based on the concept of converting short-wave solar radiation to convective heat and long wave radiation. The glazing system was modeled and evaluated experimentally; a suitable frame was developed for it; and a design tool required for its application was developed. The current paper reports on physical modeling and experimental evaluation of the glazing system.

  • 38.
    Fallenius, Bengt E.G.
    et al.
    KTH.
    Sattari, Amir
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Fransson, Jens
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Experimental study on the effect of pulsating inflow to an enclosure for improved mixing2013In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 44, p. 108-119Article in journal (Refereed)
  • 39.
    Forsberg, Ann-Kristin
    et al.
    University of Gävle, Department of Mathematics, Natural and Computer Sciences, Ämnesavdelningen för datavetenskap.
    Winkler Pettersson, Lars
    University of Gävle, Department of Mathematics, Natural and Computer Sciences, Ämnesavdelningen för datavetenskap.
    Linden, Elisabet
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Seipel, Stefan
    University of Gävle, Department of Mathematics, Natural and Computer Sciences, Ämnesavdelningen för datavetenskap.
    An augmented-reality approach to co-located visual exploration of indoor climate data in real rooms2005In: Indoor Air 2005: Proceedings of the 10th International Conference on Indoor Air Quality and Climate, 2005, p. 2860-2860Conference paper (Other academic)
    Abstract [en]

    We live in two spaces, the visible space and the non-visible but otherwise sensed space. Both spaces must satisfy our needs and there is a relation between them. If parts of the room are too cold this will lead to a restriction of the use of the room. We cannot endure draft for any longer time. Draft caused by a ventilation supply frequently leads to blockage of the supply device, which in turn gives rise to a reduction of the ventilation rate. The final result may be a deterioration of the air quality. Therefore, to be able to guarantee the air quality it is necessary to make the invisible thermal climate visible. In this paper a novel method based on Augmented Reality for presenting die thermal climate is presented and discussed. The data, e.g. temperatures and velocities, are shown on a lightweight display. Several people can walk around in a real room and see on a screen where the hot and/or cold spots may appear. Different ventilation solutions could in that way be compared in a dialogue between different actors in the building process.

  • 40.
    Fredriksson, J
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    The effect of false ceilings on the performance of passive chilled beams2007In: The 6th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings, 2007, p. 13-Conference paper (Refereed)
  • 41.
    Fredriksson, Jan
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    The effect of false ceiling on the cooling capacity of passive chilled beams2009In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 44, no 7, p. 1426-1430Article in journal (Refereed)
    Abstract [en]

    Passive chilled beams are often used to provide cooling or additional cooling when the ventilation system cannot cope with the whole cooling load. The advantage of passive cooling is that it is a silent cooling. Often the chilled beams are installed above a false ceiling and thereby the room is subdivided into two compartments. From the chilled beam a plume is generated. Make-up air (return air) needs to flow into the upper compartment to substitute the airflow generated by the chilled beam. Therefore openings for this purpose are installed in the false ceiling. Small openings constitute a resistance to the flow and the locations of the openings affect the flow pattern. The overall performance was studied in a mock-up of a real office by changing both the size and position of the openings for the make-up air. A uniform heating source was arranged by covering the floor with a heating foil. The best location and size of the openings were explored by both recording the heat absorbed by the beam and the temperature in the room. Minimum temperature attained in the room is the signature of the most efficient cooling. To achieve efficient cooling with a uniform floor-based heating source, two conditions must be fulfilled: a) the return opening area must be at least equal to the horizontal area of the chilled beam; b) the return air openings must be located at the perimeter of the room. In general we can expect conditions a) and b) to be applicable irrespective of type of heat, but for point sources we could achieve the best cooling by placing the return air opening above the heat source.

  • 42.
    Hang, J.
    et al.
    University of Hong Kong.
    Li, Y. G.
    University of Hong Kong.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Buccoliere, Riccardo
    Universita di Lecce.
    Di Sibatino, Silvana
    University of Salento.
    The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas2012In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 56, p. 346-360Article in journal (Refereed)
    Abstract [en]

    Studies are still required to understand how rural/marine wind remove ground-level pollutants released uniformly in street networks of high-rise urban areas. The link between building height variability and pollutant removal process still remains unclear. Several idealized urban-like neighbourhoods made of 9-row and 18-row small-scale high-rise square arrays (building width B = street width W, building packing density λp = 0.25) were first numerically studied with a parallel approaching wind and neglecting thermal effects. Normalized pollutant transport rates and pedestrian purging flow rate were applied to quantify the contribution of pollutant removal by mean flow and turbulent diffusion and their net purging capacity.

    Results show that the prediction of isothermal turbulent flows agreed generally well with wind tunnel data. For 9-row arrays with building height variations (standard deviation of 0–57.1%) and the same average canopy height (H0 = 2.33W), pollutant removal mainly depends on mean flows. Larger standard deviations tend to induce better pedestrian ventilation. In comparison to small and large standard deviations, medium values of 14.3–42.9% may experience smaller purging capacity by horizontal mean flows but significantly enhance that by vertical mean flows. For arrays with uniform heights, lowering aspect ratios (H/W = 2.33 and 2.67–1.5) or increasing street lengths (9-row to 18-row) may enhance the contribution of removing pollutants by turbulent diffusions across canopy roofs which may be similarly important as that by mean flows. Although further investigations are still required, this paper clarifies the relationship between building layouts, height variability and removal potential of ground-level pollutants in high-rise urban-like geometries.

  • 43.
    Hang, Jian
    et al.
    University of Hong Kong and Guangzhou University.
    Li, Yuguo
    University of Hong Kong.
    Buccolieri, Riccardo
    University of Salento, Italy.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Di Sabatino, Silvana
    University of Salento, Italy.
    On the contribution of mean flow and turbulence to city breathability: the case of long streets with tall buildings2012In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 416, p. 362-373Article in journal (Refereed)
    Abstract [en]

    This paper analyses the contribution of mean flow and turbulence to city breathability within urban canopy layers under the hypothesis that winds from rural/marine areas are sources of clean air (inhale effect) and main contributors to local-scale pollutant dilution (exhale effect). Using Computational Fluid Dynamics (CFD) simulations, several idealized long streets flanked by tall buildings are investigated for wind flow parallel to the street axis. Aspect ratios (building height/street width) ranging from 2 to 4 and street lengths ranging from neighborhood scales (~. 1. km in full scale) to city scales (~. 10. km in full scale) are analyzed. To assess the inhale effect, the age of air concept is applied to quantify the time taken by a parcel of rural/marine air to reach a reference location within the urban canopy layer. To simulate the exhale effect, removal of pollutants released from a ground level source is considered. Numerical results agree with wind tunnel observations showing that a bulk portion of rural/marine air enters the streets through windward entries, a smaller part of it leaves through street roofs and the remaining fraction blows through the street aiding pollutant dilution. Substantial differences between neighborhood-scale and city-scale configurations are found. For neighborhood-scale models, pollutant removal by rural/marine air is mainly associated to mean flow along the streets. Breathability improves in streets flanked by taller buildings since in this case more rural/marine air is captured inside canyons leading to stronger wind along the street. For city-scale models, pollutant removal due to turbulent fluctuations across street roofs competes with that due to mean flows along the street. Breathability improves in streets flanked by lower buildings in which less rural/marine air is driven out and pollutant removal by turbulent fluctuations is more effective. Based on these findings, suggestions for ventilation strategies for urban areas with tall buildings are provided.

  • 44.
    Hang, Jian
    et al.
    University of Hong Kong.
    Li, Yuguo
    University of Hong Kong.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Experimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategy2011In: Journal of Wind Engineering and Industrial Aerodynamics, ISSN 0167-6105, E-ISSN 1872-8197, Vol. 99, no 10, p. 1036-1055Article in journal (Refereed)
  • 45. Hang, Jian
    et al.
    Li, Yuguo
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Understanding Air Exchange and Pollutant Dispersion in a Very Long Street with a RBG k-e Model2006In: International Conference Megacities 2006, conference proceedings, 2006, p. 442-451Conference paper (Other academic)
  • 46.
    Hang, Jian
    et al.
    University of Hong Kong.
    Li, Yuguo
    University of Hong Kong.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Claesson, Leif
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, BMG Laboratory.
    Wind Conditions and Ventilation in high rise long Street Models2010In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 45, no 6, p. 1353-1365Article in journal (Refereed)
    Abstract [en]

    We regarded high-rise cities as obstacles and channels to wind. We first studied wind conditions and ventilations in idealized high-rise long street models experimentally and numerically with a constant street width (W = 30 mm), variable street heights (H = 2 W, 2.5W, 3W, 4W), variable street lengths (L = 47.4W, 79W. 333W, 667W) and a parallel approaching wind. The flow rates penetrating into windward entries are a little larger than the reference flow rate in the far upstream free flow through the same area with windward entries in all models. The stream-wise velocity decreases along the street as some air leaves upwardly across street roofs. Near the leeward entry, there is a downward flow which brings some air into the street and results in an accelerating process. In the neighborhood scale long streets (L = 47.4W and 79W), wind in taller streets is stronger and the ventilation is better than a lower one. For the city scale long streets (L = 333W and 667W), a constant flow region exists where the vertical velocity is zero and the stream-wise velocity remains constant. In such regions, turbulent fluctuations across the street roof are more important to air exchange than vertical mean flows. In a taller street, the process to establish the constant flow conditions is longer and the normalized balanced horizontal flow rate is smaller than those in a lower street. In the city scale long streets, the turbulence exchange rate can be 5-10 times greater than the mean flow rate. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

  • 47.
    Hang, Jian
    et al.
    Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Li, Yugo
    Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.
    Claesson, Leif
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, BMG Laboratory.
    Flow mechanisms and flow capacity in idealized long-street models2010In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 45, no 4, p. 1042-1053Article in journal (Refereed)
    Abstract [en]

    It is an open question whether a street network of a city has a certain flow capacity characterizing the flow that can pass through the street network. It s our hypothesis that at least the simple street network has a certain flow capacity. With the purpose of exploring this we studied numerically and experimentally the flow capacity in some idealized long-street models continuously lined with buildings and exposed to a parallel approaching wind. The height of all the models is the same (H = 69 mm). Three groups of models were studied: models with the same uniform street width (W = H) but different lengths (L = 21.7H, 43.5H, 72.5H); models with the same length (L = 43.5H) but different uniform width (W = H, 2H, 4H); and models with a change of width at half distance, L/2. In the last of the three cases, the width of the upstream half was always the same (W1 = H), but there was a wider (W2 = 1.25H, 1.5H, 2H) or narrower (W2 = 0.75H, 0.5H) downstream half. We normalized flow rates by a reference flow rate equal to the flow rate through an opening far upstream with the same area as the windward entry. The normalized flow rate through the windward entry was about 1.0 in all cases. For a sufficiently long-street models, a flow balance is established, creating a fully developed region with a constant horizontal flow (flow capacity) and zero vertical mean velocity. The street length does not affect the flow capacity but as expected the width of the street affects the flow capacity.

  • 48.
    Hang, Jian
    et al.
    epartment of Mechanical Engineering, The University of Hong Kong, Hong Kong.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    LI, Yuguo
    epartment of Mechanical Engineering, The University of Hong Kong, Hong Kong.
    Age of air and air exchange efficiency in idealized city models2009In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 44, no 8, p. 1714-1723Article in journal (Refereed)
    Abstract [en]

    Wind can provide relevantly clean external (rural) air into urban street network, i.e. city ventilation. The local mean age of air denotes the time it takes for the external air to reach a location after entering the urban canopy layer. The air exchange efficiency denotes the efficiency of flushing the street network with external air. However, difficulties exist in calculating the local mean age of air in a city due to open boundaries. The traditional experimental homogeneous emission method is adapted here in a CFD method to predict the urban local age of air and analyze the air exchange efficiency for city ventilation. Three simple city models are considered, including a round city model, a square city model and a long rectangular city with one main street parallel to the approaching wind or with two crossing streets. The difference in the city shape results in significant difference in the local mean age of air. In the round city of one narrow street, two inflows through street openings converge close to the city centre and exits through the street roof, so the air close to the city centre is relatively old and the air exchange efficiency is low (30%). For a round city with two crossing streets, a slightly non-parallel wind to the main street generates younger air and the higher air exchange efficiency in the city.

  • 49.
    Hang, Jian
    et al.
    Department of Mechanical Engineering, TheUniversity of Hong Kong, Hong Kong SAR, Hong Kong.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Li, Yuguo
    University of Hong Kong, Hong Kong SAR, Hong Kong.
    Effect of urban morphology on wind condition in idealized city models2009In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 43, no 4, p. 869-878Article in journal (Refereed)
    Abstract [en]

    Wind conditions in urban environments are important for a number of reasons. They can serve to transport air pollutants out of the urban environment and to moderate urban microclimatic conditions if satisfactory, yet can compromise pedestrian comfort and safety if not. We aim to study experimentally and numerically the effects of urban morphology (e.g., overall city form (skyline), street orientation, and street configuration) on wind conditions in cities. This report considers our initial investigations of two idealized city forms that are coincidentally similar to ancient Roman cities that were organized on one or two primary streets - a main north-south street, the cardus maximus, and a secondary east-west street, the decumanus maximus - and contained within a well-defined perimeter. We first consider round and square city models with one main street set parallel to the approaching wind and a secondary street producing an intersection at city centre. Not surprisingly, wind conditions in the two city models are dissimilar due to their shape differences. We then consider a long rectangular city model with a fully developed steady flow region along the main street. If the main street of the round city model is narrow, the parallel approaching wind cannot blow through the entire street and a penetrating inflow exists at the leeward opening. For the round city model with two crossing streets, a slightly non-parallel wind to the main street generates a stronger wind level in the entire street volume.

  • 50. Hang, Jian
    et al.
    Sandberg, Mats
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Li, Yuguo Li
    Claesson, Leif
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Pollutant dispersion in idealized city models with different urban morphologies2009In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 43, no 38, p. 6011-6025Article in journal (Refereed)
    Abstract [en]

    The mechanism of pollutant dispersion in idealized city models is investigated numerically by the introduction of a uniformly distributed pollutant source at street pedestrian level. We first study three short city forms with a single main street or two crossing streets, characterized by street length/street height ratios of L/H = 6 or 7 and a street height/street width ratio of H/W = 1, including a sharp-edged round city model, a smooth-edged round city model, and a sharp-edged square city model. For short city models with a single street and a parallel approaching wind, pollutant dilution mainly depends on the horizontal flow rate which decreases along the street. This decreasing rate is smallest for the smooth-edged round city model, which results in the lowest street concentrations. For city models with two crossing streets and the approaching wind parallel to the main street, the differences in overall city form result in different dispersion processes. For a sharp-edged round city model with two crossing streets, an approaching wind slightly non-parallel to the main street generates a lower pollutant concentration in the entire street volume. We also studied a sharp-edged round city model with one narrow street (L/H = 6; H/W = 6.7), finding that the uniformly distributed pollutants are transported from two street entries to the city centre, and are then removed out across the street roof. In contrast to the short city models we studied a single-street sharp-edged long rectangular city model (L/H = 21.7; H/W = 1) in which the horizontal flow rate remained nearly constant in a region far from the two entries. Within this region the turbulence across the street roof contributed more to the pollutant removal than vertical mean flows.

1234 1 - 50 of 185
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf