hig.sePublikationer
Ändra sökning
Avgränsa sökresultatet
12 1 - 50 av 51
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abrehdary, M.
    et al.
    Royal Inst Technol KTH, Div Geodesy & Satellite Positioning, S-10044 Stockholm, Sweden..
    Sjöberg, L. E.
    Royal Inst Technol KTH, Div Geodesy & Satellite Positioning, S-10044 Stockholm, Sweden..
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Royal Inst Technol KTH, Div Geodesy & Satellite Positioning, S-10044 Stockholm, Sweden..
    Modelling Moho depth in ocean areas based on satellite altimetry using Vening Meinesz-Moritz' method2016Ingår i: Acta Geodaetica et Geophysica, ISSN 2213-5812, Vol. 51, nr 2, s. 137-149Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An experiment for estimating Moho depth is carried out based on satellite altimetry and topographic information using the Vening Meinesz-Moritz gravimetric isostatic hypothesis. In order to investigate the possibility and quality of satellite altimetry in Moho determination, the DNSC08GRA global marine gravity field model and the DTM2006 global topography model are used to obtain a global Moho depth model over the oceans with a resolution of 1 degrees x 1 degrees. The numerical results show that the estimated Bouguer gravity disturbance varies from 86 to 767 mGal, with a global average of 747 mGal, and the estimated Moho depth varies from 3 to 39 km with a global average of 19 km. Comparing the Bouguer gravity disturbance estimated from satellite altimetry and that derived by the gravimetric satellite-only model GOGRA04S shows that the two models agree to 13 mGal in root mean square (RMS). Similarly, the estimated Moho depths from satellite altimetry and GOGRA04S agree to 0.69 km in RMS. It is also concluded that possible mean dynamic topography in the marine gravity model does not significantly affect the Moho determination.

  • 2.
    Abrehdary, Majid
    et al.
    Department of Environment and Life Sciences, Geomatics Section, University of Karlstad, Karlstad,Sweden; Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Lars, Sjöberg
    Division of Geodesy and Satellite Positioning, Royal Institute of Technology(KTH), Sweden.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS.
    Sampietro, Daniele
    GReD s.r.l., Como, Italy.
    Towards the Moho depth and Moho density contrast along with their uncertainties from seismic and satellite gravity observations2017Ingår i: Journal of Applied Geodesy, ISSN 1862-9016, E-ISSN 1862-9024, Vol. 11, nr 4, s. 231-247Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a combined method for estimating a new global Moho model named KTH15C, containing Moho depth and Moho density contrast (or shortly Moho parameters), from a combination of global models of gravity (GOCO05S), topography (DTM2006) and seismic information (CRUST1.0 and MDN07) to a resolution of 1° × 1° based on a solution of Vening Meinesz-Moritz’ inverse problem of isostasy. This paper also aims modelling of the observation standard errors propagated from the Vening Meinesz-Moritz and CRUST1.0 models in estimating the uncertainty of the final Moho model. The numerical results yield Moho depths ranging from 6.5 to 70.3 km, and the estimated Moho density contrasts ranging from 21 to 650 kg/m3, respectively. Moreover, test computations display that in most areas estimated uncertainties in the parameters are less than 3 km and 50 kg/m3, respectively, but they reach to more significant values under Gulf of Mexico, Chile, Eastern Mediterranean, Timor sea and parts of polar regions. Comparing the Moho depths estimated by KTH15C and those derived by KTH11C, GEMMA2012C, CRUST1.0, KTH14C, CRUST14 and GEMMA1.0 models shows that KTH15C agree fairly well with CRUST1.0 but rather poor with other models. The Moho density contrasts estimated by KTH15C and those of the KTH11C, KTH14C and VMM model agree to 112, 31 and 61 kg/m3 in RMS. The regional numerical studies show that the RMS differences between KTH15C and Moho depths from seismic information yields fits of 2 to 4 km in South and North America, Africa, Europe, Asia, Australia and Antarctica, respectively.

  • 3.
    Abrehdary, Majid
    et al.
    Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Sjöberg, Lars E.
    Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model2015Ingår i: Journal of Earth Science, ISSN 1674-487X, E-ISSN 1867-111X, Vol. 26, nr 4, s. 607-616Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    According to Vening Meinesz-Moritz (VMM) global inverse isostatic problem, either the Moho density contrast (crust-mantle density contrast) or the Moho geometry can be estimated by solving a non-linear Fredholm integral equation of the first kind. Here solutions to the two Moho parameters are presented by combining the global geopotential model (GOCO-03S), topography (DTM2006) and a seismic crust model, the latter being the recent digital global crustal model (CRUST1.0) with a resolution of 1A(0)x1A(0). The numerical results show that the estimated Moho density contrast varies from 21 to 637 kg/m(3), with a global average of 321 kg/m(3), and the estimated Moho depth varies from 6 to 86 km with a global average of 24 km. Comparing the Moho density contrasts estimated using our leastsquares method and those derived by the CRUST1.0, CRUST2.0, and PREM models shows that our estimate agrees fairly well with CRUST1.0 model and rather poor with other models. The estimated Moho depths by our least-squares method and the CRUST1.0 model agree to 4.8 km in RMS and with the GEMMA1.0 based model to 6.3 km.

  • 4.
    Abrehdary, Majid
    et al.
    Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Sjöberg, Lars E.
    Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    The spherical terrain correction and its effect on the gravimetric-isostatic Moho determination2016Ingår i: International Journal of Geophysics, ISSN 1687-885X, E-ISSN 1687-8868, Vol. 204, nr 1, s. 262-273Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this study, the Moho depth is estimated based on the refined spherical Bouguer gravity disturbance and DTM2006 topographic data using the Vening Meinesz-Moritz gravimetric-isostatic hypothesis. In this context, we compute the refined spherical Bouguer gravity disturbances in a set of 1° × 1° blocks. The spherical terrain correction, a residual correction to each Bouguer shell, is computed using rock heights and ice sheet thicknesses from the DTM2006 and Earth2014 models. The study illustrates that the defined simple Bouguer gravity disturbance corrected for the density variations of the oceans, ice sheets and sediment basins and also the non-isostatic effects needs a significant terrain correction to become the refined Bouguer gravity disturbance, and that the isostatic gravity disturbance is significantly better defined by the latter disturbance plus a compensation attraction. Our study shows that despite the fact that the lateral variation of the crustal depth is rather smooth, the terrain affects the result most significantly in many areas. The global numerical results show that the estimated Moho depths by the simple and refined spherical Bouguer gravity disturbances and the seismic CRUST1.0 model agree to 5.6 and 2.7 km in RMS, respectively. Also, the mean value differences are 1.7 and 0.2 km, respectively. Two regional numerical studies show that the RMS differences between the Moho depths estimated based on the simple and refined spherical Bouguer gravity disturbance and that using CRUST1.0 model yield fits of 4.9 and 3.2 km in South America and yield 3.2 and 3.4 km in Fennoscandia, respectively.

  • 5.
    Amin, Hadi
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för datavetenskap och samhällsbyggnad, Samhällsbyggnad.
    Sjöberg, Lars
    Division of Geodesy and satellite positioning, KTH.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för datavetenskap och samhällsbyggnad, Samhällsbyggnad.
    A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters2019Ingår i: Journal of Geodesy, ISSN 0949-7714, E-ISSN 1432-1394Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The geoid, according to the classical Gauss–Listing definition, is, among infinite equipotential surfaces of the Earth’s gravity field, the equipotential surface that in a least squares sense best fits the undisturbed mean sea level. This equipotential surface, except for its zero-degree harmonic, can be characterized using the Earth’s global gravity models (GGM). Although, nowadays, satellite altimetry technique provides the absolute geoid height over oceans that can be used to calibrate the unknown zero-degree harmonic of the gravimetric geoid models, this technique cannot be utilized to estimate the geometric parameters of the mean Earth ellipsoid (MEE). The main objective of this study is to perform a joint estimation of W0, which defines the zero datum of vertical coordinates, and the MEE parameters relying on a new approach and on the newest gravity field, mean sea surface and mean dynamic topography models. As our approach utilizes both satellite altimetry observations and a GGM model, we consider different aspects of the input data to evaluate the sensitivity of our estimations to the input data. Unlike previous studies, our results show that it is not sufficient to use only the satellite-component of a quasi-stationary GGM to estimate W0. In addition, our results confirm a high sensitivity of the applied approach to the altimetry-based geoid heights, i.e., mean sea surface and mean dynamic topography models. Moreover, as W0 should be considered a quasi-stationary parameter, we quantify the effect of time-dependent Earth’s gravity field changes as well as the time-dependent sea level changes on the estimation of W0. Our computations resulted in the geoid potential W0 = 62636848.102 ± 0.004 m2 s−2 and the semi-major and minor axes of the MEE, a = 6378137.678 ± 0.0003 m and b = 6356752.964 ± 0.0005 m, which are 0.678 and 0.650 m larger than those axes of GRS80 reference ellipsoid, respectively. Moreover, a new estimation for the geocentric gravitational constant was obtained as GM = (398600460.55 ± 0.03) × 106 m3 s−2.

  • 6.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Combination of seismic and an isostatic crustal thickness models using Butterworth filter in a spectral approach2012Ingår i: Journal of Asian Earth Sciences, ISSN 1367-9120, E-ISSN 1878-5786, Vol. 59, s. 240-248Artikel i tidskrift (Refereegranskat)
  • 7.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden .
    Deformation monitoring using different least squares adjustment methods: a simulated study2016Ingår i: KSCE Journal of Civil Engineering, ISSN 1226-7988, E-ISSN 1976-3808, Vol. 20, nr 2, s. 855-862Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study aims to investigate the ability of different least squares adjustment techniques for detecting deformation. A simulated geodetic netwo rk is used for this purpose. The observations are collected using the Total Station instrument in three epochs and different least squares adjustment methods are used to analyze the simulated network. The applied methods are adjustment-byelement, using variance-covariance components and Tikhonov regularization. For numerical computation, we utilized exist geodetic network around the simulated network and the deformation (changes in the simulated network) imposes to the object using a simulator in each epoch. The obtained results demonstrate that more accurate outcome for detection of small deformation is possible by estimating variance-covariance components. The difference of the estimated and the simulated deformations in the best scenario, i.e., applying variance-covariance components, is 0.2 and 0.1 mm in x and y directions. In comparison with adjustment by element and Tikhonov regularization methods the differences are 1.1 and 0.1 in x direction and 1.4 and 1.1 mm in y direction, respectively. In addition, it is also possible to model the deformation and therefore it can be seen that how the calculated displacement will affect the result of deformation modelling. It has been demonstrated that determining reasonable variance-covariance components is very important to estimate realistic deformation model and monitoring the geodetic networks. 

  • 8.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Global earth isostatic model using smoothed Airy-Heiskanenand Vening Meinesz hypotheses2012Ingår i: Earth Science Informatics, ISSN 1865-0473, Vol. 5, nr 2, s. 93-104Artikel i tidskrift (Refereegranskat)
  • 9.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Impact of compensating mass on the topographic mass: A study using isostatic and non-isostatic Earth crustal models2012Ingår i: Acta Geodaetica et Geophysica Hungarica, ISSN 1217-8977, E-ISSN 1587-1037, Vol. 47, nr 1, s. 29-51Artikel i tidskrift (Refereegranskat)
  • 10.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. KTH Royal Institute of Technology, Stockholm, Sweden.
    Bai, Yongliang
    School of Geosciences, China University of Petroleum (East China), Qingdao, China.
    Sjöberg, Lars
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Tenzer, Robert
    NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Plzeň, Czechia.
    Abrehdary, Majid
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Miranda, Silvia
    Departamento de Geofísica y Astronomía, FCEFN Universidad Nacional de San Juan, San Juan, Argentina.
    Sanchez, Juan M. Alcacer
    Departamento de Geofísica y Astronomía, FCEFN Universidad Nacional de San Juan, San Juan, Argentina.
    Effect of the lithospheric thermal state on the Moho interface: a case study in South America2017Ingår i: Journal of South American Earth Sciences, ISSN 0895-9811, E-ISSN 1873-0647, Vol. 76, s. 198-207Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Gravimetric methods applied for Moho recovery in areas with sparse and irregular distribution of seismic data often assume only a constant crustal density. Results of latest studies, however, indicate that corrections for crustal density heterogeneities could improve the gravimetric result, especially in regions with a complex geologic/tectonic structure. Moreover, the isostatic mass balance reflects also the density structure within the lithosphere. The gravimetric methods should therefore incorporate an additional correction for the lithospheric mantle as well as deeper mantle density heterogeneities. Following this principle, we solve the Vening Meinesz-Moritz (VMM) inverse problem of isostasy constrained by seismic data to determine the Moho depth of the South American tectonic plate including surrounding oceans, while taking into consideration the crustal and mantle density heterogeneities. Our numerical result confirms that contribution of sediments significantly modifies the estimation of the Moho geometry especially along the continental margins with large sediment deposits. To account for the mantle density heterogeneities we develop and apply a method in order to correct the Moho geometry for the contribution of the lithospheric thermal state (i.e., the lithospheric thermal-pressure correction). In addition, the misfit between the isostatic and seismic Moho models, attributed mainly to deep mantle density heterogeneities and other geophysical phenomena, is corrected for by applying the non-isostatic correction. The results reveal that the application of the lithospheric thermal-pressure correction improves the RMS fit of the VMM gravimetric Moho solution to the CRUST1.0 (improves ∼ 1.9 km) and GEMMA (∼1.1 km) models and the point-wise seismic data (∼0.7 km) in South America.

  • 11.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS.
    Eshagh, Mehdi
    Avd för naturvetenskap, lantmäteri- och maskinteknik, Institutionen för ingenjörsvetenskap, Högskolan i Väst.
    Combined Moho Estimators2014Ingår i: Geodynamics : Research International Bulletin, ISSN ISSN 2345-4997, Vol. 1, nr 3, s. 1-11Artikel i tidskrift (Övrig (populärvetenskap, debatt, mm))
    Abstract [en]

    In this study, we develop three estimators to optimally combine seismic and gravimetric models of Moho surface. The first estimator combines them by their special harmonic coefficients; the second one uses the spherical harmonic coefficients of the seismic model and use integral formula for the gravimetric one. The kernel of the integral terms of this estimator shows that a cap size of 20◦ is required for the integration, but since this integral is presented to combine the low frequencies of the gravimetric model, a low resolution model is enough for the integration. The third estimator uses the gravity anomaly and converts its low frequencies to those of the gravimetric Moho model, meanwhile combining them with those of seismic one. This integral requires an integration domain of 30◦ for the gravity anomalies but since the maximum degree of this kernel is limited to a specific degree, the use of its spectral form is recommended. The kernel of the integral involving the gravity anomalies, developed for recovering high frequencies of Moho, is written in a closed-from formula and its singularity is investigated. This kernel is well-behaving and decreases fast, meaning that it is suitable for recovering the high frequencies of Moho surface.

  • 12.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Eshagh, Mehdi
    Royal Institute of Technology (KTH), Stockholm, Sweden, and K.N.Toosi University of Technology, Tehran, Iran .
    Crustal thickness recovery using an isostatic model and GOCE data2012Ingår i: Earth Planets and Space, ISSN 1343-8832, E-ISSN 1880-5981, Vol. 64, nr 11, s. 1053-1057Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    One of the GOCE satellite mission goals is to study the Earth's interior structure including its crustal thickness. A gravimetric-isostatic Moho model, based on the Vening Meinesz-Moritz (VMM) theory and GOCE gradiometric data, is determined beneath Iran's continental shelf and surrounding seas. The terrestrial gravimetric data of Iran are also used in a nonlinear inversion for a recovering-Moho model applying the VMM model. The newly-computed Moho models are compared with the Moho data taken from CRUST2.0. The root-mean-square (RMS) of differences between the CRUST2.0 Moho model and the recovered model from GOCE and that from the terrestrial gravimetric data are 3.8 km and 4.6 km, respectively.

  • 13.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Eshagh, Mehdi
    Islamic Azad Univ, Dept Surveying.
    Recovery of Moho’s undulations based on the Vening Meinesz–Moritz theory from satellite gravity gradiometry data: A simulation study2012Ingår i: Advances in Space Research, ISSN 0273-1177, E-ISSN 1879-1948, Vol. 49, nr 6, s. 1097-1111Artikel i tidskrift (Refereegranskat)
  • 14.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet. Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Sjöberg, Lars E.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad.
    A synthetic Earth gravity model based on a topographic-isostatic model2012Ingår i: Studia Geophysica et Geodaetica, ISSN 0039-3169, E-ISSN 1573-1626, Vol. 56, nr 4, s. 935-955Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Earth's gravity field is related to the topographic potential in medium and higher degrees, which is isostatically compensated. Hence, the topographic-isostatic (TI) data are indispensable for extending an available Earth Gravitational Model (EGM) to higher degrees. Here we use TI harmonic coefficients to construct a Synthetic Earth Gravitational Model (SEGM) to extend the EGMs to higher degrees. To achieve a high-quality SEGM, a global geopotential model (EGM96) is used to describe the low degrees, whereas the medium and high degrees are obtained from the TI or topographic potential. This study differes from others in that it uses a new gravimetric-isostatic model for determining the TI potential. We test different alternatives based on TI or only topographic data to determine the SEGM. Although the topography is isostatically compensated only to about degree 40-60, our study shows that using a compensation model improves the SEGM in comparison with using only topographic data for higher degree harmonics. This is because the TI data better adjust the applied Butterworth filter, which bridges the known EGM and the new high-degree potential field than the topographic data alone.

  • 15.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Sjöberg, Lars E.
    Royal Institute of Technology (KTH), Stockholm, Sweden.
    Improving gravimetric–isostatic models of crustal depth by correcting for non-isostatic effects and using CRUST2.02013Ingår i: Earth-Science Reviews, ISSN 0012-8252, E-ISSN 1872-6828, Vol. 117, s. 29-39Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The principle of isostasy is important in different fields of geosciences. Using an isostatic hypothesis for estimating the crustal thickness suffers from the more or less incomplete isostatic model and that the observed gravity anomaly is not only generated by the topographic/isostatic signal but also by non-isostatic effects (NIEs). In most applications of isostatic models the NIEs are disregarded. In this paper, we study how some isostatic models related with Vening Meinez's isostatic hypothesis can be improved by considering the NIE. The isostatic gravity anomaly needs a correction for the NIEs, which varies from as much as 494 mGal to − 308 mGal. The result shows that by adding this correction the global crustal thickness estimate improves about 50% with respect to the global model CRUST2.0, i.e. the root mean square differences of the crustal thickness of the best Vening Meinesz type and CRUST2.0 models are 6.9 and 3.2 km before and after improvement, respectively. As a result, a new global model of crustal thickness using Vening Meinesz and CRUST2.0 models is generated. A comparison with an independent African crustal depth model shows an improvement of the new model by 6.8 km vs. CRUST2.0 (i.e. rms differences of 3.0 and 9.8 km, respectively). A comparison between oceanic lithosphere age and the NIEs is discussed in this study, too. One application of this study can be to improve crustal depth in areas where CRUST2.0 data are sparse and bad and to densify the resolution vs. the CRUST2.0 model. Other applications can be used to infer the viscosity of the mantle from the NIEs signal to study various locations around the Earth for understanding complete, over- and under-compensations of the topography.

  • 16.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Sjöberg, Lars E
    Royal Institute of Technology (KTH), Stockholm, Sweden.
    Modelling the density contrast and depth of the Moho discontinuity by seismic and gravimetric–isostatic methods with an application to Africa2012Ingår i: Journal of African Earth Sciences, ISSN 0899-5362, Vol. 68, s. 111-120Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The crustal thickness (Moho depth) is of interest in several geosciences applications, such as geography, geophysics and geodesy. Usually the crustal depth and density variations are estimated by seismic survey data. As such data collection is very time-consuming and expensive an attractive option could be to use a gravimetric/isostatic model. In this case, realistic estimates for the crustal density and Moho density contrast (MDC) are important. In this study, we first use the seismic crustal thickness of CRUST2.0 model as a known parameter in combination with gravimetric data in estimating the crust–mantle density contrast by the isostatic model of Vening Meinesz–Moritz. We present different models to estimate the MDC and its impact on the modelling of the gravimetric–isostatic Moho depth. The theory is applied to estimate the Moho depth of the African continental crust by using different models for the MDC: (a) constant value (0.6 g/cm3), (b) Pratt–Hayford’s model, (c) CRUST2.0 as input to three gravimetric/isostatic models based on Vening Meinesz–Moritz theory. The isostatic models agree by 5.8–7.1 km in the rms with the regional seismic model at a resolution of 2 x2, and the smallest rms difference at a resolution of 1x1is of

    7.2 km. For comparison, the rms differences of CRUST2.0 and the regional seismic model are 8.8 and 9.1 km at the resolutions of 2 deg (interpolated) and 1 deg respectively. The result suggests that the gravimetric/isostatic Moho model can be used in densification of the CRUST2.0 Moho geometry, and to improve it in areas with poor data.

  • 17.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Sjöberg, Lars E.
    KTH Royal Institute of Technology, Division of Geodesy and Geoinformatics.
    Non-isostatic effects on crustal thickness: A study using CRUST2.0 in Fennoscandia2012Ingår i: Physics of the Earth and Planetary Interiors, ISSN 0031-9201, E-ISSN 1872-7395, Vol. 200, s. 37-44Artikel i tidskrift (Refereegranskat)
  • 18.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. KTH.
    Sjöberg, Lars E.
    KTH.
    Tenzer, Robert
    Wuhan University, China.
    Abrehdary, Majid
    KTH.
    A new Fennoscandian crustal thickness model based on CRUST1.0 and a gravimetric-isostatic approach2015Ingår i: Earth-Science Reviews, ISSN 0012-8252, E-ISSN 1872-6828, Vol. 145, s. 132-145Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    In this paper a new gravimetric-isostatic crustal thickness model (VMM14_FEN) is estimated for Fennoscandia. The main motivation is to investigate the relations between geological and geophysical properties, the Moho depth and crust-mantle density contrast at the crust-mantle discontinuity. For this purpose the Bouguer gravity disturbance data is corrected in two main ways namely for the gravitational contributions of mass density variation due to the different layers of the Earth's crust such as ice and sediments, as well as for the gravitational contribution from deeper masses below the crust. This second correction (for non-isostatic effects) is necessary because in general the crust is not in complete isostatic equilibrium and the observed gravity data are not only generated by the topographic/isostatic masses but also from those in the deep Earth interior. The correction for non-isostatic effects is mainly attributed to unmodeled mantle and core boundary density heterogeneities. These corrections are determined using the recent seismic crustal thickness model CRUST1.0. We compare our modeling results with previous studies in the area and test the fitness. The comparison with the external Moho model EuCRUST-07 shows a 3.3. km RMS agreement for the Moho depth in Fennoscandia. We also illustrate how the above corrections improve the Moho depth estimation. Finally, the signatures of geological structures and isostatic equilibrium are studied using VMM14_FEN, showing how main geological unit structures attribute in isostatic balance by affecting the Moho geometry. The main geological features are also discussed in the context of the complete and incomplete isostatic equilibrium. 

  • 19.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Tenzer, Robert
    Institute of Geodesy and Geophysics, School of Geodesy and Geomatics, Wuhan University, Wuhan, China .
    Comparative analysis of Vening-Meinesz Moritz isostatic models using the constant and variable crust-mantle density contrast – a case study of Zealandia2013Ingår i: Journal of Earth System Science, ISSN 0973-774X, Vol. 122, nr 2, s. 339-348Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We compare three different numerical schemes of treating the Moho density contrast in gravimetric inverse problems for finding the Moho depths. The results are validated using the global crustal model CRUST2.0, which is determined based purely on seismic data. Firstly, the gravimetric recovery of the Moho depths is realized by solving Moritz’s generalization of the Vening-Meinesz inverse problem of isostasy while the constant Moho density contrast is adopted. The Pratt-Hayford isostatic model is then facilitated to estimate the variable Moho density contrast. This variable Moho density contrast is subsequently used to determine the Moho depths. Finally, the combined least-squares approach is applied to estimate jointly the Moho depths and density contract based on a priori error model. The EGM2008 global gravity model and the DTM2006.0 global topographic/bathymetric model are used to generate the isostatic gravity anomalies. The comparison of numerical results reveals that the optimal isostatic inverse scheme should take into consideration both the variable depth and density of compensation. This is achieved by applying the combined least-squares approach for a simultaneous estimation of both Moho parameters. We demonstrate that the result obtained using this method has the best agreement with the CRUST2.0 Moho depths. The numerical experiments are conducted at the regional study area of New Zealand’s continental shelf.

  • 20.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS.
    Tenzer, Robert
    The Key Laboratory of Geospace Environment and Geodesy, School of Geodesy and Geomatics, Wuhan University, Wuhan, China.
    Comparative study of the uniform and variable Moho density contrast in the Vening Meinesz-Moritz’s isostatic scheme for the gravimetric Moho recovery2016Ingår i: International Association of Geodesy Symposia: 3rd International Gravity Field Service, IGFS 2014; Shanghai; China; 30 June 2014 through 6 July 2014 / [ed] Jin, S.G., Springer Berlin/Heidelberg, 2016, Vol. 144, s. 199-207Konferensbidrag (Refereegranskat)
    Abstract [en]

    In gravimetric methods for a determination of the Moho geometry, the constant value of the Moho density contract is often adopted. Results of gravimetric and seismic studies, however, showed that the Moho density contrast varies significantly. The assumption of a uniform density contrast thus might yield large errors in the estimated Moho depths. In this study we investigate these errors by comparing the Moho depths determined globally for the uniform and variable models of the Moho density contrast. These two gravimetric results are obtained based on solving the Vening Meinesz-Moritz’s inverse problem of isostasy. The uniform model of the Moho density contrast is defined individually for the continental and oceanic lithosphere to better reproduce the reality. The global data of the lower crust and upper mantle retrieved from the CRUST1.0 seismic crustal model are used to define the variable Moho density contrast. This seismic model is also used to validate both gravimetric solutions. Results of our numerical experiment reveals that the consideration of the variable Moho density contrast improves the agreement between the gravimetric and seismic Moho models; the RMS of differences is 5.4 km (for the uniform density contrast) and 4.7 km (for the variable density contrast).

  • 21.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet. KTH, Geodesy & Geoinformatics, Stockholm, Sweden.
    Tenzer, Robert
    School of Geodesy and Geomatics, Wuhan University, Wuhan, China.
    Geoid-to-Quasigeoid Separation Computed Using the GRACE/GOCE Global Geopotential Model GOCO02S: A Case Study of Himalayas and Tibet2013Ingår i: Terrestrial, Atmospheric and Oceanic Science, ISSN 1017-0839, E-ISSN 2223-8964, Vol. 24, nr 1, s. 59-68Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The geoid-to-quasigeoid correction has been traditionally computed approximately as a function of the planar Bouguer gravity anomaly and the topographic height. Recent numerical studies based on newly developed theoretical models, however, indicate that the computation of this correction using the approximate formula yields large errors especially in mountainous regions with computation points at high elevations. In this study we investigate these approximation errors at the study area which comprises Himalayas and Tibet where this correction reaches global maxima. Since the GPS-leveling and terrestrial gravity datasets in this part of the world are not (freely) available, global gravitational models (GGMs) are used to compute this correction utilizing the expressions for a spherical harmonic analysis of the gravity field. The computation of this correction can be done using the GGM coefficients taken from the Earth Gravitational Model 2008 (EGM08) complete to degree 2160 of spherical harmonics. The recent studies based on a regional accuracy assessment of GGMs have shown that the combined GRACE/GOCE solutions provide a substantial improvement of the Earth’s gravity field at medium wavelengths of spherical harmonics compared to EGM08. We address this aspect in numerical analysis by comparing the gravity field quantities computed using the satellite-only combined GRACE/GOCE model GOCO02S against the EGM08 results. The numerical results reveal that errors in the geoid-to-quasigeoid correction computed using the approximate formula can reach as much as ~1.5 m. We also demonstrate that the expected improvement of the GOCO02S gravity field quantities at medium wavelengths (within the frequency band approximately between 100 and 250) compared to EGM08 is as much as ±60 mGal and ±0.2 m in terms of gravity anomalies and geoid/quasigeoid heights respectively.

  • 22.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Tenzer, Robert
    School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan, China .
    Sjöberg, Lars E.
    Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Abrehdary, Majid
    Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden.
    On the residual isostatic topography effect in the gravimetric Moho determination2015Ingår i: Journal of Geodynamics, ISSN 0264-3707, E-ISSN 1879-1670, Vol. 83, s. 28-36Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In classical isostatic models, a uniform crustal density is typically assumed, while disregarding the crustal density heterogeneities. This assumption, however, yields large errors in the Moho geometry determined from gravity data, because the actual topography is not fully isostatically compensated. Moreover, the sub-crustal density structures and additional geodynamic processes contribute to the overall isostatic balance. In this study we investigate the effects of unmodelled density structures and geodynamic processes on the gravity anomaly and the Moho geometry. For this purpose, we define the residual isostatic topography as the difference between actual topography and isostatic topography, which is computed based on utilizing the Vening Meinesz-Moritz isostatic theory. We show that the isostatic gravity bias due to disagreement between the actual and isostatically compensated topography varies between -382 and 596 mGal. This gravity bias corresponds to the Moho correction term of -16 to 25 km. Numerical results reveal that the application of this Moho correction to the gravimetrically determined Moho depths significantly improves the RMS fit of our result with some published global seismic and gravimetric Moho models. We also demonstrate that the isostatic equilibrium at long-to-medium wavelengths (up to degree of about 40) is mainly controlled by a variable Moho depth, while the topographic mass balance at a higher-frequency spectrum is mainly attained by a variable crustal density.

  • 23.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Tenzer, Robert
    Wuhan University, China.
    Sjöberg, Lars
    Royal Institute of Technology (KTH), Stockholm, Sweden.
    Novak, Pavel
    University of West Bohemia, Plzen, Czech Republic.
    Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction2013Ingår i: Journal of Geodynamics, ISSN 0264-3707, E-ISSN 1879-1670, Vol. 66, s. 25-37Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In classical isostatic models for a gravimetric recovery of the Moho parameters (i.e., Moho depths and density contrast) the isostatic gravity anomalies are usually defined based on the assumption that the topographic mass surplus and the ocean mass deficiency are compensated within the Earth’s crust. As acquired in this study, this assumption yields large disagreements between isostatic and seismic Moho models. To assess the effects not accounted for in classical isostatic models, we conduct a number of numerical experiments using available global gravity and crustal structure models. First, we compute the gravitational contributions of mass density contrasts due to ice and sediments, and subsequently evaluate respective changes in the Moho geometry. Residual differences between the gravimetric and seismic Moho models are then used to predict a remaining non-isostatic gravity signal, which is mainly attributed to unmodeled density structures and other geophysical phenomena. We utilize three recently developed computational schemes in our numerical studies. The apparatus of spherical harmonic analysis and synthesis is applied in forward modeling of the isostatic gravity disturbances. The Moho depths are estimated globally on a 1 arc-deg equiangular grid by solving the Vening-Meinesz Moritz inverse problem of isostasy. The same estimation model is applied to evaluate the differences between the isostatic and seismic models. We demonstrate that the application of the ice and sediment density contrasts stripping gravity corrections is essential for a more accurate determination of the Moho geometry. We also show that the application of the additional non-isostatic correction further improves the agreement between the Moho models derived based on gravity and seismic data. Our conclusions are based on comparing the gravimetric results with the CRUST2.0 global crustal model compiled using results of seismic surveys.

  • 24.
    Bagherbandi, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet. KTH.
    Tenzer, Robert
    Royal Institute of Technology (KTH), Stockholm, Sweden .
    Sjöberg, L.E.
    Wuhan University, Wuhan, China .
    Moho depth uncertainties in the Vening-Meinesz Moritz inverse problem of isostasy2014Ingår i: Studia Geophysica et Geodaetica, ISSN 0039-3169, E-ISSN 1573-1626, Vol. 58, nr 2, s. 227-248Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We formulate an error propagation model based on solving the Vening Meinesz-Moritz (VMM) inverse problem of isostasy. The system ofobservation equations in the VMM model defines the relation between theisostatic gravity data and the Moho depth  by means of a second-order Fredholm integralequation of the first kind. The corresponding error model (derived in aspectral domain) functionally relates the Moho depth errors with the commissionerrors of used gravity and topographic/bathymetric models. The error model alsoincorporates the non-isostatic bias which describesthe disagreement, mainly of systematic nature, between the isostatic andseismic models. The error analysis is conducted at the study area of theTibetan Plateau and Himalayas with the world largest crustal thickness. TheMoho depth uncertainties due to errors of the currently available globalgravity and topographic models are estimated to be typically up to 1-2 km,provided that the GOCE gravity gradient observables improved themedium-wavelength gravity spectra. The errors due to disregarding sedimentarybasins can locally exceed ~2 km. The largest errors (which cause a systematic bias betweenisostatic and seismic models) are attributed to unmodeled mantleheterogeneities (including thecore-mantle boundary) and other geophysical processes. These errors aremostly less than 2 km under significant orogens (Himalayas, Ural), but canreach up to ~10 km under the oceanic crust.

  • 25.
    Baranov, Alexey
    et al.
    Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia; Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Tenzer, Robert
    Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong, China.
    Combined Gravimetric-Seismic Moho Model of Tibet2018Ingår i: Geosciences, ISSN 2076-3263, Vol. 8, nr 12, artikel-id UNSP 461Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Substantial progress has been achieved over the last four decades to better understand a deep structure in the Himalayas and Tibet. Nevertheless, the remoteness of this part of the world still considerably limits the use of seismic data. A possible way to overcome this practical restriction partially is to use products from the Earth’s satellite observation systems. Global topographic data are provided by the Shuttle Radar Topography Mission (SRTM). Global gravitational models have been derived from observables delivered by the gravity-dedicated satellite missions, such as the Gravity Recovery and Climate Experiment (GRACE) and the Gravity field and steady-state Ocean Circulation Explorer (GOCE). Optimally, the topographic and gravity data should be combined with available results from tomographic surveys to interpret the lithospheric structure, including also a Moho relief. In this study, we use seismic, gravity, and topographic data to estimate the Moho depth under orogenic structures of the Himalayas and Tibet. The combined Moho model is computed based on solving the Vening Meinesz-Moritz (VMM) inverse problem of isostasy, while incorporating seismic data to constrain the gravimetric solution. The result of the combined gravimetric-seismic data analysis exhibits an anticipated more detailed structure of the Moho geometry when compared to the solution obtained merely from seismic data. This is especially evident over regions with sparse seismic data coverage. The newly-determined combined Moho model of Tibet shows a typical contrast between a thick crustal structure of orogenic formations compared to a thinner crust of continental basins. The Moho depth under most of the Himalayas and the Tibetan Plateau is typically within 60-70 km. The maximum Moho deepening of similar to 76 km occurs to the south of the Bangong-Nujiang suture under the Lhasa terrane. Local maxima of the Moho depth to similar to 74 km are also found beneath Taksha at the Karakoram fault. This Moho pattern generally agrees with the findings from existing gravimetric and seismic studies, but some inconsistencies are also identified and discussed in this study.

  • 26.
    Baranov, Alexey
    et al.
    Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russian Federation; Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russian Federation.
    Tenzer, Robert
    Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Combined Gravimetric–Seismic Crustal Model for Antarctica2018Ingår i: Surveys in geophysics, ISSN 0169-3298, E-ISSN 1573-0956, Vol. 39, nr 1, s. 23-56Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz’s inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48–50 km) and the Kottas Mountains (48–50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34–38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24–28 km), while in West Antarctica the Moho depth minima are along the West Antarctic Rift System under the Bentley depression (20–22 km) and Ross Sea Ice Shelf (16–24 km). The gravimetric result confirmed a maximum extension of the Antarctic continental margins under the Ross Sea Embayment and the Weddell Sea Embayment with an extremely thin continental crust (10–20 km).

  • 27.
    Eshagh, M.
    et al.
    K N Toosi University of Technology, Department of Geodesy, Tehran, Iran .
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet. Royal Institute of Technology (KTH), Division of Geodesy and Geoinformatics, Stockholm, Sweden.
    Quality description for gravimetric and seismic moho models of fennoscandia through a combined adjustment2012Ingår i: Acta Geodaetica et Geophysica Hungarica, ISSN 1217-8977, E-ISSN 1587-1037, Vol. 47, nr 4, s. 388-401Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The gravimetric model of the Moho discontinuity is usually derived based on isostatic adjustment theories considering floating crust on the viscous mantle. In computation of such a model some a priori information about the density contrast between the crust and mantle and the mean Moho depth are required. Due to our poor knowledge about them they are assumed unrealistically constant. In this paper, our idea is to improve a computed gravimetric Moho model, by the Vening Meinesz-Moritz theory, using the seismic model in Fennoscandia and estimate the error of each model through a combined adjustment with variance component estimation process. Corrective surfaces of bi-linear, bi-quadratic, bi-cubic and multi-quadric radial based function are used to model the discrepancies between the models and estimating the errors of the models. Numerical studies show that in the case of using the bi-linear surface negative variance components were come out, the bi-quadratic can model the difference better and delivers errors of 2.7 km and 1.5 km for the gravimetric and seismic models, respectively. These errors are 2.1 km and 1.6 km in the case of using the bi-cubic surface and 1 km and 1.5 km when the multi-quadric radial base function is used. The combined gravimetric models will be computed based on the estimated errors and each corrective surface.

  • 28.
    Gido, Nureldin A. A.
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för datavetenskap och samhällsbyggnad, Samhällsbyggnad. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för datavetenskap och samhällsbyggnad, Samhällsbyggnad. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Sjöberg, Lars E.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för datavetenskap och samhällsbyggnad, Samhällsbyggnad. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    A gravimetric method to determine horizontal stress field due to flow in the mantle in Fennoscandia2019Ingår i: Geosciences Journal, ISSN 1226-4806, Vol. 23, nr 3, s. 377-389Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mass changes and flow in the Earth's mantle causes the Earth's crust not only to movevertically, but also horizontally and to tilt, and produce a major stress in the lithosphere.Here we use a gravimetric approach to model sub-lithosphere horizontal stress in theEarth's mantle and its temporal changes caused by geodynamical movements likemantle convection in Fennoscandia. The flow in the mantle is inferred from tectonicsand convection currents carrying heat from the interior of the Earth to the crust. Theresult is useful in studying how changes of the stress influence the stability of crust.The outcome of this study is an alternative approach to studying the stress and itschange using forward modelling and the Earth's viscoelastic models. We show that thedetermined horizontal stress using a gravimetric method is consistent with tectonicsand seismic activities. In addition, the secular rate of change of the horizontal stress,which is within 95 kPa/year, is larger outside the uplift dome than inside.

  • 29.
    Gido, Nureldin A. A.
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för datavetenskap och samhällsbyggnad, Samhällsbyggnad. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för datavetenskap och samhällsbyggnad, Samhällsbyggnad. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Sjöberg, Lars E.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för datavetenskap och samhällsbyggnad, Samhällsbyggnad. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Tenzer, Robert
    Department of Land Surveying and Geo‑Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong.
    Studying permafrost by integrating satellite and in situ data in the northern high-latitude regions2019Ingår i: Acta Geophysica, ISSN 1895-6572, E-ISSN 1895-7455, Vol. 67, nr 2, s. 721-734Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    There is an exceptional opportunity of achieving simultaneous and complementary data from a multitude of geoscience and environmental near-earth orbiting artificial satellites to study phenomena related to the climate change. These satellite missions provide the information about the various phenomena, such as sea level change, ice melting, soil moisture variation, temperature changes and earth surface deformations. In this study, we focus on permafrost thawing and its associated gravity change (in terms of the groundwater storage), and organic material changes using the gravity recovery and climate experiment (GRACE) data and other satellite- and ground-based observations. The estimation of permafrost changes requires combining information from various sources, particularly using the gravity field change, surface temperature change, and glacial isostatic adjustment. The most significant factor for a careful monitoring of the permafrost thawing is the fact that this process could be responsible for releasing an additional enormous amount of greenhouse gases emitted to the atmosphere, most importantly to mention carbon dioxide (CO2) and methane that are currently stored in the frozen ground. The results of a preliminary numerical analysis reveal a possible existence of a high correlation between the secular trends of greenhouse gases (CO2), temperature and equivalent water thickness (in permafrost active layer) in the selected regions. Furthermore, according to our estimates based on processing the GRACE data, the groundwater storage attributed due to permafrost thawing increased at the annual rates of 3.4, 3.8, 4.4 and 4.0 cm, respectively, in Siberia, North Alaska and Canada (Yukon and Hudson Bay). Despite a rather preliminary character of our results, these findings indicate that the methodology developed and applied in this study should be further improved by incorporating the in situ permafrost measurements.

  • 30.
    Joud S., Mehdi
    et al.
    KTH.
    Sjöberg, Lars E.
    KTH.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. 1Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Use of GRACE Data to Detect the Present Land Uplift Rate in Fennoscandia2017Ingår i: Geophysical Journal International, ISSN 0956-540X, E-ISSN 1365-246X, Vol. 209, nr 2, s. 909-922Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    After more than 13 years of GRACE monthly data, the determined secular trend of gravity field variation can be used to study the regions of glacial isostatic adjustment (GIA). Here we focus on Fennoscandia where long-term terrestrial and high-quality GPS data are available, and we study the monthly GRACE data from three analysis centres. We present a new approximate formula to convert the secular trend of the GRACE gravity change to the land uplift rate without making assumptions of the ice load history. The question is whether the GRACE-derived land uplift rate by our method is related to GIA. A suitable post-processing method for the GRACE data is selected based on weighted RMS differences with the GPS data. The study reveals that none of the assumed periodic changes of the GRACE gravity field is significant in the estimation of the secular trend, and they can, therefore, be neglected. Finally, the GRACE-derived land uplift rates are obtained using the selected post-processing method, and they are compared with GPS land uplift rate data. The GPS stations with significant differences were marked using a statistical significance test. The smallest RMS difference (1.0 mm/a) was obtained by using GRACE data from the University of Texas.

  • 31.
    Nilfouroushan, Faramarz
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Geodetic infrastructure Department, Lantmäteriet, Gävle, Sweden.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS.
    Gido, Nureldin
    Ground Subsidence And Groundwater Depletion In Iran: Integrated approach Using InSAR and Satellite Gravimetry2017Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Long-term monitoring of temporal gravity field and ground water level changes in Iran and its associated ground subsidence seen by geodetic methods are important for water source and hazard management.The high-rate (cm to dm/year) ground subsidence in Iran has been widely investigated by using different geodetic techniques such as precise leveling, GPS and interferometric synthetic aperture radar (InSAR). The previous individual SAR sensors (e.g. ERS, ENVISAT and ALOS) or multi-sensors approach have successfully shown localized subsidence in different parts of Iran. Now, thanks to freely available new SAR sensor Sentinel-1A data, we aim at investigate further the subsidence problem in this region.

    In this ongoing research, firstly, we use a series of Sentinel-1A SAR Images, acquired between 2014 to 2017 to generate subsidence-rate maps in different parts of the country. Then, we correlate the InSAR results with the monthly observations of the Gravity Recovery and Climate Experiment (GRACE) satellite mission in this region. The monthly GRACE data computed at CNES from 2002 to 2017 are used to compute the time series for total water storage changes. The Global Land Data Assimilation System( GLDAS) hydrological model (i.e. soil moisture, snow water equivalent and surface water) is used to estimate Groundwater changes from total water storage changes obtiaend from GRACE data.

    So far, we have generated a few interferograms, using Sentinel-1A data and SNAP software, which shows a few cm subsidence in western Tehran in last 2 years. We will try more Sentinel images for this area to better constrain the rate and extent of deformation and will continue InSAR processing for the rest of the country to localize the deformation zones and their rates. We will finally comapre the rates of subsidence obtained from InSAR and the rate of groundwater changes estimated from GRACE data.

  • 32.
    Novák, Pavel
    et al.
    University of West Bohemia, Plzeň, Czech Republic.
    Tenzer, Robert
    National School of Surveying, Division of Sciences, University of Otago, Dunedin, New Zealand.
    Eshagh, Mehdi
    Royal Institute of Technology, Stockholm, Sweden.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Evaluation of gravitational gradients generated by Earth's crustal structures2013Ingår i: Computers & Geosciences, ISSN 0098-3004, E-ISSN 1873-7803, Vol. 51, s. 22-33Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Spectral formulas for the evaluation of gravitational gradients generated by upper Earth’s mass components are presented in the manuscript. The spectral approach allows for numerical evaluation of global gravitational gradient fields that can be used to constrain gravitational gradients either synthesised from global gravitational models or directly measured by the spaceborne gradiometer on board of the GOCE satellite mission. Gravitational gradients generated by static atmospheric, topographic and continental ice masses are evaluated numerically based on available global models of Earth’s topography, bathymetry and continental ice sheets. CRUST2.0 data are then applied for the numerical evaluation of gravitational gradients generated by mass density contrasts within soft and hard sediments, upper, middle and lower crust layers. Combined gravitational gradients are compared to disturbing gravitational gradients derived from a global gravitational model and an idealised Earth’s model represented by the geocentric homogeneous biaxial ellipsoid GRS80. The methodology could be used for improved modelling of the Earth’s inner structure.

  • 33.
    Sjöberg, Lars
    et al.
    Division of Geodesy and Satellite Positioning KTH.
    Abrehdry, Majid
    Division of Geodesy and Satellite Positioning.
    Bagherbandi, Mohammad
    Division of Geodesy and Satellite Positioning KTH.
    The observed geoid height versus Airy's and Pratt's isostatic models using matched asymptotic expansions2014Ingår i: Acta Geodaetica et Geophysica Hungarica, ISSN 1217-8977, E-ISSN 1587-1037, Vol. 49, nr 4, s. 473-490Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Isostasy is a key concept in geodesy and geophysics. The classical isostatic models of Airy/Heiskanen and Pratt/Hayford imply that the topographic mass surplus and ocean mass deficit are balanced by mountain roots and anti-roots in the former model and by density variations in the topography and the compensation layer below sea bottom in the latter model. In geophysics gravity inversion is an essential topic where isostasy comes to play. The main objective of this study is to compare the prediction of geoid heights from the above isostatic models based on matched asymptotic expansion with geoid heights observed by the Earth Gravitational Model 2008. Numerical computations were carried out both globally and in several regions, showing poor agreements between the theoretical and observed geoid heights. As an alternative, multiple regression analysis including several non-isostatic terms in addition to the isostatic terms was tested providing only slightly better success rates. Our main conclusion is that the geoid height cannot generally be represented by the simple formulas based on matched asymptotic expansions. This is because (a) both the geoid and isostatic compensation of the topography have regional to global contributions in addition to the pure local signal considered in the classical isostatic models, and (b) geodynamic phenomena are still likely to significantly blur the results despite that all spherical harmonic low-degree (below degree 11) gravity signals were excluded from the study.

  • 34.
    Sjöberg, Lars
    et al.
    Royal Institute of Technology (KTH), Stockholm, Sweden .
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    A study on the Fennoscandian post-glacial rebound as observed by present-day uplift rates and gravity field model GOCO02S2013Ingår i: Acta Geodaetica et Geophysica Hungarica, ISSN 1217-8977, E-ISSN 1587-1037, Vol. 48, nr 3, s. 317-331Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Repeated absolute gravity measurements in Fennoscandia have revealed that the on-going post-glacial rebound can be regarded as a pure viscous flow of mantle mass of density 3390 kg/m3 towards the central part of the region caused by a gravity/uplift rate of −0.167 μGal/mm. Our model estimates the rebound induced rates of changes of surface gravity and geoid height to have peaks of −1.9 μGal/yr and 1.6 mm/yr, respectively, the former being consistent with absolute gravity observations. The correlation coefficient of the spherical harmonic representations of the geoid height and uplift rate for the spectral windows between degrees 10 and 70 is estimated to −0.99±0.006, and the maximum remaining land uplift is estimated to the order of 80 m. Both the (almost) linear increase of relaxation time with degree and the linear relation between geoid height and uplift rate support a model with mass flow in the major part of the mantle and disqualify the model with a flow in a thin channel below the crust. The mean viscosity of the flow in the central uplift region is estimated to 4×1021 Pa s.

  • 35.
    Sjöberg, Lars E.
    et al.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. KTH Royal Institute of Technology, Stockholm, Sweden.
    Gravity Inversion and Integration: Theory and Applications in Geodesy and Geophysics2017Bok (Övrigt vetenskapligt)
    Abstract [en]

    This book contains theory and applications of gravity both for physical geodesy and geophysics. It identifies classical and modern topics for studying the Earth. Worked-out examples illustrate basic but important concepts of the Earth’s gravity field. In addition, coverage details the Geodetic Reference System 1980, a versatile tool in most applications of gravity data.

    The authors first introduce the necessary mathematics. They then review classic physical geodesy, including its integral formulas, height systems and their determinations. The next chapter presents modern physical geodesy starting with the original concepts of M.S. Molodensky. A major part of this chapter is a variety of modifying Stokes’ formula for geoid computation by combining terrestrial gravity data and an Earth Gravitational Model.

    Coverage continues with a discussion that compares today’s methods for modifying Stokes’ formulas for geoid and quasigeoid determination, a description of several modern tools in physical geodesy, and a review of methods for gravity inversion as well as analyses for temporal changes of the gravity field.

    This book aims to broaden the view of scientists and students in geodesy and geophysics. With a focus on theory, it provides basic and some in-depth knowledge about the field from a geodesist’s perspective.

  • 36.
    Sjöberg, Lars E.
    et al.
    Royal Institute of Technology, Stockholm, Sweden.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Royal Institute of Technology, Stockholm, Sweden.
    Isostasy - Geodesy2016Ingår i: Encyclopedia of Geodesy / [ed] Grafarend, Erik, Springer , 2016Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    Isostasy (Greek isos “equal,” stasis “stand still”) is a term in geology, geophysics, and geodesy to describe the state of mass balance (equilibrium) between the Earth’s crust and upper mantle. It describes a condition to which the mantle tends to balance the mass of the crust in the absence of external forces.

  • 37.
    Sjöberg, Lars E.
    et al.
    Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden .
    Tenzer, Robert
    School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan, China .
    On Gravity Inversion by No-Topography and Rigorous Isostatic Gravity Anomalies2015Ingår i: Pure and Applied Geophysics, ISSN 0033-4553, E-ISSN 1420-9136, Vol. 172, nr 10, s. 2669-2680Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We discuss some theoretical aspects and practical consequences of using traditional versus “new”/rigorous formulations of the Bouguer and isostatic gravity anomalies/disturbances. In principle, the differences between these two concepts are in the definition of the so-called secondary indirect topographic effect (SITE) on the gravity data. Although we follow the tradition to call this effect SITE, we show that it is formally a direct topographic effect (DITE), needed to remove all topographic signal, but in practice not regarded as such. Consequently, there is a need for a no-topography gravity anomaly, which removes all topographic effects, leaving the below-crust Earth transparent for gravity inversion. Similarly, a rigorous isostatic gravity anomaly includes also a compensation effect for the SITE. By using a simple topographic model, we confirm a theoretically found ratio of 2/(n + 1) between the magnitudes of the SITE and DITE by wavelength (spherical harmonic degree n), both for the Bouguer and isostatic gravity anomalies. Finally, global gravity inversions are applied by utilizing the Vening Meinesz-Moritz isostatic model to determine the Moho geometry using the Bouguer gravity disturbances/anomalies and the no-topography gravity anomalies, and the results are compared. The numerical results confirm our theoretical findings that the Bouguer gravity disturbances and the no-topography gravity anomalies provide very similar results. A comparison of these gravimetrically computed Moho depths with the CRUST1.0 seismic model shows rms agreements of 4.3 and 4.5 km, respectively. This is a significant improvement when compared to the Moho result obtained by using the Bouguer gravity anomalies, yielding the rms difference of 7.3 km for the CRUST1.0 model. These results confirm a theoretical deficiency of the classical definition of the Bouguer and isostatic gravity anomalies, which do not take into consideration the SITE effects on the topography and its compensation. 

  • 38.
    Tenzer, Robert
    et al.
    The Key Laboratory of Geospace Environment and GeodesySchool of Geodesy and Geomatics, Wuhan UniversityWuhanChina.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för datavetenskap och samhällsbyggnad, Samhällsbyggnad. Division of Geodesy and Satellite Positioning.
    Comparative Study of the Uniform and Variable Moho Density Contrast in the Vening Meinesz-Moritz’s Isostatic Scheme for the Gravimetric Moho Recovery2014Ingår i: IGFS 2014, Proceedings of the 3rd International Gravity Field Service (IGFS), Shanghai, China, 30 June - 6 July 2014 / [ed] Shuanggen Jin, Riccardo Barzaghi, Springer, 2014, s. 199-207Konferensbidrag (Refereegranskat)
    Abstract [en]

    In gravimetric methods for a determination of the Moho geometry, the constant value of the Moho density contract is often adopted. Results of gravimetric and seismic studies, however, showed that the Moho density contrast varies significantly. The assumption of a uniform density contrast thus might yield large errors in the estimated Moho depths. In this study we investigate these errors by comparing the Moho depths determined globally for the uniform and variable models of the Moho density contrast. These two gravimetric results are obtained based on solving the Vening Meinesz-Moritz’s inverse problem of isostasy. The uniform model of the Moho density contrast is defined individually for the continental and oceanic lithosphere to better reproduce the reality. The global data of the lower crust and upper mantle retrieved from the CRUST1.0 seismic crustal model are used to define the variable Moho density contrast. This seismic model is also used to validate both gravimetric solutions. Results of our numerical experiment reveals that the consideration of the variable Moho density contrast improves the agreement between the gravimetric and seismic Moho models; the RMS of differences is 5.4 km (for the uniform density contrast) and 4.7 km (for the variable density contrast).

  • 39.
    Tenzer, Robert
    et al.
    Institute of Geodesy and Geophysics, School of Geodesy and Geomatics, Wuhan University, Wuhan, China.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet. Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Reference crust-mantle density contrast beneath Antarctica based  on the Vening Meinesz-Moritz isostatic inverse problem and CRUST2.0 seismic model2013Ingår i: Earth Science Research, ISSN 1927-0542, E-ISSN 1927-0550, Vol. 17, nr 1, s. 7-12Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The crust-mantle (Moho) density contrast beneath Antarctica was estimated based on solving the Vening Meinesz-Moritz isostatic problem and using constraining information from a seismic global crustal model (CRUST2.0). The solution was found by applying a least-squares adjustment by elements method. Global geopotential model (GOCO02S), global topographic/bathymetric model (DTM2006.0), ice-thickness data for Antarctica (assembled by the BEDMAP project) and global crustal model (CRUST2.0) were used for computing isostatic gravity anomalies. Since CRUST2.0 data for crustal structures under Antarctica are not accurate (due to a lack of seismic data in this part of the world), Moho density contrast was determined relative to a reference homogenous crustal model having 2,670 kg/m3 constant density. Estimated values of Moho density contrast were between 160 and 682 kg/m3. The spatial distribution of Moho density contrast resembled major features of the Antarctic’s continental and surrounding oceanic tectonic plate configuration; maxima exceeding 500 kg/m3 were found throughout the central part of East Antarctica, with an extension beneath the Transantarctic mountain range. Moho density contrast in West Antarctica decreased to 400-500 kg/m3, except for local maxima up to ~ 550 kg/m3 in the central Antarctic Peninsula.

  • 40.
    Tenzer, Robert
    et al.
    National School of Surveying, University of Otago, Dunedin, New Zealand.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Reformulation of the Vening-Meinesz Moritz Inverse Problem of Isostasy for Isostatic Gravity Disturbances2012Ingår i: International Journal of Geosciences, ISSN 2156-8359, E-ISSN 2156-8367, Vol. 3, nr 5A, s. 918-929Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The isostatic gravity anomalies have been traditionally used to solve the inverse problems of isostasy. Since gravity measurements are nowadays carried out together with GPS positioning, the utilization of gravity disturbances in various regional gravimetric applications becomes possible. In global studies, the gravity disturbances can be computed using global geopotential models which are currently available to a relatively high accuracy and resolution. In this study we facilitate the definition of the isostatic gravity disturbances in the Vening-Meinesz Moritz inverse problem of isostasy for finding the Moho depths. We further utilize uniform mathematical formalism in the gravimetric forward modelling based on methods for a spherical harmonic analysis and synthesis of gravity field. We then apply both mathematical procedures to determine globally the Moho depths using the isostatic gravity disturbances. The results of gravimetric inversion are finally compared with the global crustal seismic model CRUST2.0; the RMS fit of the gravimetric Moho model with CRUST2.0 is 5.3 km. This is considerably better than the RMS fit of 7.0 km obtained after using the isostatic gravity anomalies.

  • 41.
    Tenzer, Robert
    et al.
    School of Geodesy and Geomatics, Wuhan University, Wuhan, China .
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden .
    Theoretical deficiencies of isostatic schemes in modeling the crustal thickness along the convergent continental tectonic plate boundaries2016Ingår i: Journal of Earth Science, ISSN 1674-487X, E-ISSN 1867-111X, Vol. 27, nr 6, s. 1045-1053Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The results of global and regional studies often show significant disagreement between the Moho depths determined using seismic and isostatic models. In this study, we estimate the differences between these two models in central Eurasia. The Vening Meinesz-Moritz (VMM) inverse problem of isostasy is utilized to determine the isostatic Moho depths. The estimated VMM Moho depths are then corrected for the sediment density contrast. The application of this correction improves the agreement between the isostatic and seismic Moho models. The existing discrepancies between the isostatic and seismic models are finally modeled by applying the non-isostatic correction, which accounts for the unmodelled mantle density heterogeneities and other geodynamic processes, which are not taken into account in classical isostatic models. Our results reveal that the non-isostatic correction still cannot fully describe mechanisms affecting the Moho geometry along the convergent continent-tocontinent tectonic plate boundaries occurring beneath Himalayas despite an overall good performance of the applied method. 

  • 42.
    Tenzer, Robert
    et al.
    University of Otago.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Cheinway, Hwang
    Chang, Emmy Tsui-Yu
    Moho Interface Modeling Beneath the Himalayas, Tibet and Central Siberia Using GOCO02S and DTM2006.02013Ingår i: Terrestrial, Atmospheric and Oceanic Science, ISSN 1017-0839, E-ISSN 2223-8964, Vol. 24, nr 4, s. 581-590Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We apply a newly developed method to estimate the Moho depths and density contrast beneath the Himalayas, Tibet and Central Siberia. This method utilizes the combined least-squares approach based on solving the inverse problem of isostasy and using the constraining information from the seismic global crustal model (CRUST2.0). The gravimetric forward modeling is applied to compute the isostatic gravity anomalies using the global geopotential model (GOCO02S) and the global topographic/bathymetric model (DTM2006.0). The estimated Moho depths vary between 60 - 70 km beneath most of the Himalayas and Tibet and reach the maxima of ~79 km. The Moho depth under Central Siberia is typically 50 - 60 km. The Moho density contrast computed relative to the CRUST2.0 lower crustal densities has the maxima of ~300 kg m-3 under Central Tibet. It substantially decreases to 150 - 250 kg m-3 under Himalayas and north Tibet. The estimated Moho density contrast under central Siberia is within 100 - 200 kg m-3.

  • 43.
    Tenzer, Robert
    et al.
    Key Laboratory of Geospace Environment and Geodesy, Wuhan University, Wuhan, China; he New Technologies for the Information Society, University of West Bohemia, Plzen, Czech Republic.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. the Royal Institute of Technology, Stockholm, Sweden.
    Chen, Wenjin
    University of Trieste, Trieste, Italy.
    Sjöberg, Lars E.
    the Royal Institute of Technology, Stockholm, Sweden.
    Global Isostatic Gravity Maps From Satellite Missions and Their Applications in the Lithospheric Structure Studies2017Ingår i: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, ISSN 1939-1404, E-ISSN 2151-1535, Vol. 10, nr 2, s. 549-561Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recent satellite gravity missions provide information on the Earth’s gravity field with a global and homogenous coverage. These data have been utilized in geoscience studies to investigate the Earth’s inner structure. In this study, we use the global gravitational models to compute and compare various isostatic gravity data. In particular, we compile global maps of the isostatic gravity disturbances by applying the Airy-Heiskanen and Pratt-Hayford isostatic theories based on assuming a local compensation mechanism. We further apply the Vening Meinesz-Moritz isostatic (flexural) model based on a more realistic assumption of the regional compensation mechanism described for the Earth’s homogenous and variable crustal structure. The resulting isostatic gravity fields are used to analyze their spatial and spectral characteristics with respect to the global crustal geometry. Results reveal that each of the applied compensation model yields a distinctive spatial pattern of the isostatic gravity field with its own spectral characteristics. The Airy-Heiskanen isostatic gravity disturbances provide a very smooth gravity field with no correlation with the crustal geometry. The Pratt-Hayford isostatic gravity disturbances are spatially highly correlated with the topography on land, while the Vening-Meinesz Moritz isostatic gravity disturbances are correlated with the Moho geometry. The complete crust-stripped isostatic gravity disturbances reveal a gravitational signature of the mantle lithosphere. These general characteristics provide valuable information for selection of a particular isostatic scheme, which could be used for gravimetric interpretations, depending on a purpose of the study.

  • 44.
    Tenzer, Robert
    et al.
    University of Otago, National School of Surveying.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Gladkikh, Vladislav
    University of Otago, National School of Surveying.
    Signature of the upper mantle density structure in the refined gravity data2012Ingår i: Computational Geosciences, ISSN 1420-0597, E-ISSN 1573-1499, Vol. 16, nr 4, s. 975-986Artikel i tidskrift (Refereegranskat)
  • 45.
    Tenzer, Robert
    et al.
    Institute of Geodesy and Geophysics, School of Geodesy and Geomatics, Wuhan University, Wuhan, China .
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Royal Institute of Technolog (KTH), Division of Geodesy & Geoinformation, Stockholm, Sweden.
    Sjöberg, Lars E.
    Royal Institute of Technolog (KTH), Division of Geodesy & Geoinformation, Stockholm, Sweden.
    Comparison of various isostatic marine gravity disturbances2015Ingår i: Journal of Earth System Science, ISSN 0253-4126, E-ISSN 0973-774X, Vol. 124, nr 6, s. 1235-1245Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present and compare four types of the isostatic gravity disturbances compiled at sea level over the world oceans and marginal seas. These isostatic gravity disturbances are computed by applying the Airy– Heiskanen (AH), Pratt–Hayford (PH) and Vening Meinesz–Moritz (VMM) isostatic models. In addition, we compute the complete crust-stripped (CCS) isostatic gravity disturbances which are defined based on a principle of minimizing their spatial correlation with the Moho geometry. We demonstrate that each applied compensation scheme yields a distinctive spatial pattern in the resulting isostatic marine gravity field. The AH isostatic gravity disturbances provide the smoothest gravity field (by means of their standard deviation). The AH and VMM isostatic gravity disturbances have very similar spatial patterns due to the fact that the same isostatic principle is applied in both these definitions expect for assuming a local (in the former) instead of a global (in the latter) compensation mechanism. The PH isostatic gravity disturbances are highly spatially correlated with the ocean-floor relief. The CCS isostatic gravity disturbances reveal a signature of the ocean-floor spreading characterized by an increasing density of the oceanic lithosphere with age. 

  • 46.
    Tenzer, Robert
    et al.
    Wuhan University, China, Hubei, China.
    Bagherbandi, Mohammad
    Division of Geodesy and Satellite Positioning, KTH.
    Sjöberg, Lars
    Division of Geodesy and Satellite Positioning KTH.
    Novak, Pavel
    University of West Bohemia, Czech Republic, Plzeň, República Checa.
    Isostatic crustal thickness under the Tibetan Plateau and Himalayas from satellite gravity gradiometry data2015Ingår i: Earth Sciences Research Journal, ISSN 1794-6190, E-ISSN 2339-3459, Vol. 19, nr 2Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The global gravity and crustal models are used in this study to determine the regional Moho model. For this purpose, we solve the Vening Meinesz-Moritz's (VMM) inverse problem of isostasy defined in terms of the isostatic gravity gradient. The functional relation between the Moho depth and the second-order radial derivative of the VMM isostatic potential is formulated by means of the (linearized) Fredholm integral equation of the first kind. Methods for a spherical harmonic analysis and synthesis of the gravity field and crustal structure models are applied to evaluate the gravity gradient corrections and the respective corrected gravity gradient, taking into consideration major known density structures within the Earth's crust (while mantle heterogeneities are disregarded). The resulting gravity gradient is compensated isostatically based on applying the VMM scheme. The VMM inverse problem for finding the Moho depths is solved iteratively. The regularization is applied to stabilize the ill-posed solution. The global geopotential model GOCO-03s, the global topographic/bathymetric model DTM2006.0 and the global crustal model CRUST1.0 are used to generate the VMM isostatic gravity gradient with a spectral resolution complete to a spherical harmonic degree of 250. The VMM inverse scheme is used to determine the regional isostatic crustal thickness beneath the Tibetan Plateau and Himalayas (compiled on a 1x1 arc-deg grid). The differences between the isostatic and seismic Moho models are modeled and subsequently corrected for by applying the non-isostatic correction. Our results show that the regional gravity gradient inversion can model realistically the relative Moho geometry, while the solution contains a systematic bias. We explain this bias by more localized information on the Earth's inner structure in the gravity gradient field compared to the potential or gravity fields.

  • 47.
    Tenzer, Robert
    et al.
    University of Otago, National School of Surveying.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet.
    Vajda, Peter
    Geophysical Institute of the Slovak Academy of Sciences.
    Depth-dependent density change within the continental upper mantle2012Ingår i: Slovak Academy of Sciences. Geophysical Institute. Contributions to Geophysics and Geodesy, ISSN 1338-0540, Vol. 42, nr 1, s. 1-13Artikel i tidskrift (Refereegranskat)
  • 48.
    Tenzer, Robert
    et al.
    Wuhan Univ, Peoples R China.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet. Royal Inst Technol KTH, Stockholm, Sweden.
    Vajda, Peter
    Slovak Acad Sci, Slovakia.
    Global model of the upper mantle lateral density structure based on combining seismic and isostatic models2013Ingår i: Geosciences Journal, ISSN 1598-7477, Vol. 17, nr 1, s. 65-73Artikel i tidskrift (Refereegranskat)
  • 49.
    Tenzer, Robert
    et al.
    Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong, China.
    Chen, Wenjin
    Department of Geodesy and Geomatics, Wuhan University, Wuhan, China.
    Baranov, Alexey
    Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russian Federation; Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russian Federation.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Gravity maps of Antarctic lithospheric structure from remote-sensing and seismic data2018Ingår i: Pure and Applied Geophysics, ISSN 0033-4553, E-ISSN 1420-9136, Vol. 175, nr 6, s. 2181-2203Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth’s interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic–Indian and Pacific–Antarctic mid-oceanic ridges and it is possibly formed by two major fault segments. Gravity lows over the Transantarctic Mountains confirms their non-collisional origin. Additionally, more localized gravity lows closely coincide with known locations of hotspots and volcanic regions (Marie Byrd Land, Balleny Islands, Mt. Erebus). Gravity lows also suggest a possible hotspot under the South Orkney Islands. However, this finding has to be further verified.

  • 50. Tenzer, Robert
    et al.
    Chen, Wenjin
    Tsoulis, Dimitrios
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Royal Institute of Technology (KTH), Stockholm, Sweden .
    Sjöberg, Lars E.
    Novák, Pavel
    Jin, Shuanggen
    Analysis of the Refined CRUST1.0 Crustal Model and its Gravity Field2015Ingår i: Surveys in geophysics, ISSN 0169-3298, E-ISSN 1573-0956, Vol. 36, nr 1, s. 139-165Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The global crustal model CRUST1.0 (refined using additional global datasets of the solid topography, polar ice sheets and geoid) is used in this study to estimate the average densities of major crustal structures. We further use this refined model to compile the gravity field quantities generated by the Earth's crustal structures and to investigate their spatial and spectral characteristics and their correlation with the crustal geometry in context of the gravimetric Moho determination. The analysis shows that the average crustal density is 2,830 kg/m3, while it decreases to 2,490 kg/m3 when including the seawater. The average density of the oceanic crust (without the seawater) is 2,860 kg/m3, and the average continental crustal density (including the continental shelves) is 2,790 kg/m3. The correlation analysis reveals that the gravity field corrected for major known anomalous crustal density structures has a maximum (absolute) correlation with the Moho geometry. The Moho signature in these gravity data is seen mainly at the long-to-medium wavelengths. At higher frequencies, the Moho signature is weakening due to a noise in gravity data, which is mainly attributed to crustal model uncertainties. The Moho determination thus requires a combination of gravity and seismic data. In global studies, gravimetric methods can help improving seismic results, because (1) large parts of the world are not yet sufficiently covered by seismic surveys and (2) global gravity models have a relatively high accuracy and resolution. In regional and local studies, the gravimetric Moho determination requires either a detailed crustal density model or seismic data (for a combined gravity and seismic data inversion). We also demonstrate that the Earth's long-wavelength gravity spectrum comprises not only the gravitational signal of deep mantle heterogeneities (including the core-mantle boundary zone), but also shallow crustal structures. Consequently, the application of spectral filtering in the gravimetric Moho determination will remove not only the gravitational signal of (unknown) mantle heterogeneities, but also the Moho signature at the long-wavelength gravity spectrum. 

12 1 - 50 av 51
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf