hig.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Broberg Viklund, Sarah
    et al.
    Johansson, Maria T.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction2014In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 77, p. 369-379Article in journal (Refereed)
    Abstract [en]

    Industrial excess heat is a large untapped resource, for which there is potential for external use, which would create benefits for industry and society. Use of excess heat can provide a way to reduce the use of primary energy and to contribute to global CO2 mitigation. The aim of this paper is to present different measures for the recovery and utilization of industrial excess heat and to investigate how the development of the future energy market can affect which heat utilization measure would contribute the most to global CO2 emissions mitigation. Excess heat recovery is put into a context by applying some of the excess heat recovery measures to the untapped excess heat potential in Gavleborg County in Sweden. Two different cases for excess heat recovery are studied: heat delivery to a district heating system and heat-driven electricity generation. To investigate the impact of excess heat recovery on global CO2 emissions, six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrial excess heat in Gavleborg County is not used today. The results show that with the proposed recovery measures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be supplied from this heat. Electricity generation would result in reduced global CO2 emissions in all of the analyzed scenarios, while heat delivery to a DH system based on combined heat and power production from biomass would result in increased global CO2 emissions when the CO2 emission charge is low. 

  • 2.
    Brunke, Jean-Christian
    et al.
    Institute for Energy Economics and the Rational Use of Energy (IER), University of Stuttgart, Stuttgart, Germany .
    Johansson, Maria
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Department of Management and Engineering, Division of Energy Systems, Linköping University.
    Thollander, Patrik
    Department of Management and Engineering, Division of Energy Systems, Linköping University, Linköping, Sweden .
    Empirical investigation of barriers and drivers to the adoption of energy conservation measures, energy management practices and energy services in the Swedish iron and steel industry2014In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 84, no 1, p. 509-525Article in journal (Refereed)
    Abstract [en]

    The Swedish iron and steel industry is focused on the production of advanced steel grades and accounts for about 5% of the country's final energy consumption. Energy efficiency is according to the European Commission a key element for the transition towards a resource-efficient economy. We investigated four aspects that are associated with the adoption of cost-effective energy conservation measures: barriers, drivers, energy management practices and energy services. We used questionnaires and follow-up telephone interviews to collect data from members of the Swedish steel association. The heterogeneous observations implied a classification into steel producers and downstream actors. For testing the significance, the Mann–Whitney U test was used. The most important barriers were internal economic and behavioural barriers. Energy service companies, in particular third-party financing, played a minor role. In contrast, high importance was attached to energy management as the most important drivers originated from within the company. Energy management practices showed that steel companies are actively engaged in the topic, but need to raise its prioritisation and awareness within the organisation. When sound energy management practices are included, the participants assessed the cost-effective energy conservation potential to be 9.7%, which was 2.4% higher than the potential for solely adopting cost-effective technologies.

  • 3.
    Johansson, Maria
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem.
    Improved Energy Efficiency and Fuel Substitution in the Iron and Steel Industry2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    IPCC reported in its climate change report 2013 that the atmospheric concentrations of the greenhouse gases (GHG) carbon dioxide (CO2), methane, and nitrous oxide now have reached the highest levels in the past 800,000 years. CO2 concentration has increased by 40% since pre-industrial times and the primary source is fossil fuel combustion. It is vital to reduce anthropogenic emissions of GHGs in order to combat climate change. Industry accounts for 20% of global anthropogenic CO2 emissions and the iron and steel industry accounts for 30% of industrial emissions. The iron and steel industry is at date highly dependent on fossil fuels and electricity. Energy efficiency measures and substitution of fossil fuels with renewable energy would make an important contribution to the efforts to reduce emissions of GHGs.

    This thesis studies energy efficiency measures and fuel substitution in the iron and steel industry and focuses on recovery and utilisation of excess energy and substitution of fossil fuels with biomass. Energy systems analysis has been used to investigate how changes in the iron and steel industry’s energy system would affect the steel plant’s economy and global CO2 emissions. The thesis also studies energy management practices in the Swedish iron and steel industry with the focus on how energy managers think about why energy efficiency measures are implemented or why they are not implemented. In-depth interviews with energy managers at eleven Swedish steel plants were conducted to analyse energy management practices.

    In order to show some of the large untapped heat flows in industry, excess heat recovery potential in the industrial sector in Gävleborg County in Sweden was analysed. Under the assumptions made in this thesis, the recovery output would be more than three times higher if the excess heat is used in a district heating system than if electricity is generated. An economic evaluation was performed for three electricity generation technologies for the conversion of low-temperature industrial excess heat. The results show that electricity generation with organic Rankine cycles and phase change material engines could be profitable, but that thermoelectric generation of electricity from low-temperature industrial excess heat would not be profitable at the present stage of technology development. With regard to fossil fuels substituted with biomass, there are opportunities to substitute fossil coal with charcoal in the blast furnace and to substitute liquefied petroleum gas (LPG) with bio-syngas or bio synthetic natural gas (bio-SNG) as fuel in the steel industry’s reheating furnaces. However, in the energy market scenarios studied, substituting LPG with bio-SNG as fuel in reheating furnaces at the studied scrap-based steel plant would not be profitable without economic policy support. The development of the energy market is shown to play a vital role for the outcome of how different measures would affect global CO2 emissions.

    Results from the interviews show that Swedish steel companies regard improved energy efficiency as important. However, the majority of the interviewed energy managers only worked part-time with energy issues and they experienced that lack of time often was a barrier for successful energy management. More efforts could also be put into engaging and educating employees in order to introduce a common practice of improving energy efficiency at the company.

  • 4.
    Johansson, Maria
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy engineering. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem.
    Söderström, Mats
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem.
    Bio-syngas as fuel in the steel industry's heating furnaces: a case study on feasibility and CO2 mitigation effects2011Conference paper (Other academic)
    Abstract [en]

    Today, climate change is at the top of the political agenda. The European Commission has set atarget to reduce greenhouse gas emissions by 20 % by 2020, compared to 1990 levels. The steelindustry contributes significantly to industrial CO2 emissions, and thus it is important for thissector to find options to reduce its CO2 emissions. One alternative is to substitute fossil fuelswith biomass derived fuels; a promising option is to replace LPG (Liquefied Petroleum Gas) used asfuel in heating furnaces with bio-syngas produced through the gasification of biomass. This paperis a feasibility study of the implementation of this concept at a Swedish scrap-based steel plant.The results have been obtained through a case study approach with interviews and literaturesurveys. The study shows that if a fuel gas mixture of 50 vol% bio-syngas and 50 vol% LPG would beused, the global CO2 emissions would be reduced by 5,400 tonnes/year. Moreover, a full-scale fuelsubstitution would result in reduced emissions by 68,600 tonnes/year. In the case of a partial fuelsubstitution, a 4 MWth High Temperature Agent Gasifier (HTAG) is a suitable choice while a 45 MWthindirectly heated Circulating Fluidised Bed Gasifier (CFBG) would be suitable for a full-scale fuelsubstitution. In the case of a fuel switch, the lower heating value of syngas, compared to LPG, notonly implies that a different combustion technology must be used, but also that the exhaust gasflows will be substantially larger, and consequently the exhaust gas cleaning system must bedesigned with dimensions suitable for larger flows. Excess heat from the gasifier can be used forspace heating, but if the excess heat replaces district heating from a Combined Heat and Power(CHP) plant, the global CO2 emissionsreductions would be less than if the excess heat is not recovered.

  • 5.
    Johansson, Maria T.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy engineering. Department of Management and Engineering, Division of Energy Systems, Linköping University.
    Bio-synthetic natural gas as fuel in steel industry reheating furnaces: A case study of economic performance and effects on global CO2 emissions2013In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 57, p. 699-708Article in journal (Refereed)
    Abstract [en]

    Climate change is of great concern for society today. Manufacturing industries and construction account for approximately 20% of global CO2 emissions and, consequently, it is important that this sector investigate options to reduce its CO2 emissions. One option could be to substitute fossil fuels with renewable alternatives. This paper describes a case study in which four future energy market scenarios predicting 2030 were used to analyse whether it would be profitable for a steel plant to produce bio-SNG (bio-synthetic natural gas) in a biomass gasifier and to substitute LPG (liquefied petroleum gas) with bio-SNG as fuel in reheating furnaces. The effects on global CO2 emissions were analysed from a perspective in which biomass is considered a limited resource. The results from the analysis show that investment in a biomass gasifier and fuel conversion would not be profitable in any of the scenarios. Depending on the scenario, the production cost for bio-SNG ranged between 22 and 36 EUR/GJ. Fuel substitution would reduce global CO2 emission if the marginal biomass user is a producer of transportation fuel. However, if the marginal user of biomass is a coal power plant with wood co-firing, the result would be increased global CO2 emissions.

  • 6.
    Johansson, Maria T.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Linköping University.
    Improved energy efficiency within the Swedish steel industry: the importance of energy management and networking2015In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 8, no 4, p. 713-744Article in journal (Refereed)
    Abstract [en]

    The iron and steel industry is an energy-intensive industry that consumes a significant portion of fossil fuel and electricity production. Climate change, the threat of an unsecure energy supply and rising energy prices have emphasised the issue of improved energy efficiency in the iron and steel industry. However, an energy-efficiency gap is well recognised, i.e. cost-efficient measures are not implemented in practice. This study will go deeper into why this gap occurs by investigating energy-management practices at 11 iron and steel companies in Sweden. Energy managers at the steel plants were interviewed about how they perceived their own and their companies’ efforts to improve energy efficiency and how networking among energy managers influenced the efforts to improve energy efficiency. Reported barriers to improved energy efficiency were, for example, too long payback period, lack of profitability, lack of personnel, risk of production disruption, lack of time and lack of commitment. Only three out of the eleven companies had assigned a person to work full time with energy management, and some of the energy managers were frustrated with not having enough time to work with energy issues. Generally, the respondents felt that they had support from senior management and that energy issues were prioritised, but only a few of the companies had made great efforts to involve employees in improving energy efficiency. Networking among Swedish steel companies was administered by the Swedish Steel Producers’ Association, and their networking meetings contributed to the exchange of knowledge and ideas. In conclusion, Swedish steel companies regard improved energy efficiency as important but have much work left to do in this area. For example, vast amounts of excess heat are not being recovered and more efforts could be put into engaging employees and introducing a culture of energy efficiency.

  • 7.
    Johansson, Maria T.
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Linköping University.
    Söderström, Mats
    Electricity generation from low-temperature industrial excess heat: an opportunity for the steel industry2014In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 7, no 2, p. 203-215Article in journal (Refereed)
    Abstract [en]

    Awareness of climate change and the threat of rising energy prices have resulted in increased attention being paid to energy issues and industry seeing a cost benefit in using more energy-efficient production processes. One energy-efficient measure is the recovery of industrial excess heat. However, this option has not been fully investigated and some of the technologies for recovery of excess heat are not yet commercially available. This paper proposes three technologies for the generation of electricity from low-temperature industrial excess heat. The technologies are thermoelectric generation, organic Rankine cycle and phase change material engine system. The technologies are evaluated in relation to each other, with regard to temperature range of the heat source, conversion efficiency, capacity and economy. Because the technologies use heat of different temperature ranges, there is potential for concurrent implementation of two or more of these technologies. Even if the conversion efficiency of a technology is low, it could be worthwhile to utilise if there is no other use for the excess heat. The iron and steel industry is energy intensive and its production processes are often conducted at high temperatures. As a consequence, large amounts of excess heat are generated. The potential electricity production from low-temperature excess heat at a steel plant was calculated together with the corresponding reduction in global CO2 emissions.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf