hig.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Mattsson, Magnus
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Andersson, Lars T
    University of Gävle, Department of Mathematics, Natural and Computer Sciences, Ämnesavdelningen för naturvetenskap.
    Birch and grass pollen allergens in filtered office indoor air2008In: Indoor air 2008: proceedings of the 11. International Conference on Indoor Air Quality and Climate, Technical University of Denmark, Kongens Lyngby 2008, Kgs Lyngby: Technical university of Denmark , 2008Conference paper (Refereed)
    Abstract [en]

    In an experimental field study, airborne particulate birch and grass pollen allergens were sampled with a cascade impactor on the roof of an office building in the centre of a middle-sized town in Sweden. The impactor separated particles into eight size fractions. Simultaneously, inhalable pollen allergens in the indoor air were sampled in offices of the building. Significant amounts of the outdoor pollen allergens were found on particles much smaller than the pollen grains. These small particles could penetrate the fine filters (quality F6) of the building’s ventilation system. By taking into account the effectiveness of the installed ventilation filters, the pollen allergen concentration indoors could be well predicted, thus pointing out the supply air as the main source of indoor pollen allergens. Comparison of data from workdays with those from weekends indicated that secondary emissions of pollen allergens brought indoors by people (on clothes, hair, shoes etc.) were insignificant.

  • 2.
    Mattsson, Magnus
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Building science - installation technology.
    Andersson, Lars T
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Chemistry.
    Alm Kübler, Kerstin
    Swedish Museum of Natural History, Laboratory of Palynology.
    Ekebom, Agneta
    Swedish Museum of Natural History, Laboratory of Palynology.
    Jansson, Anders
    Stockholm University, ITM.
    Holmquist, Leif
    Consultant at University of Gävle.
    Vesterberg, Olof
    Consultant at University of Gävle.
    Ventilation filter efficiency for birch pollen allergens: experimental data from one pollen season2011In: Proceedings from Roomvent 2011 / [ed] Hans Martin Mathisen, Trondheim: Tapir Akademisk Forlag , 2011Conference paper (Refereed)
    Abstract [en]

    In an experimental study, ventilation filters of high quality (F7 & F9) were tested regarding their efficiency in collecting birch pollen allergens in outdoor air. The birch pollen grain concentration in outdoor air was measured at the same time as pollen allergen and particle number concentrations were measured before and after the tested ventilation filters, thus enabling collection efficiency calculations. Simultaneously, the size distribution of birch pollen allergens was measured in outdoor air using a cascade impactor. The study confirms previous indications that pollen allergens may occur in outdoor air in particles much smaller than pollen grains, and can penetrate ventilation filters to a larger extent than might be expected. This entails that although the high quality filters collect most of outdoor air pollen allergens, a significant exposure dose to these allergens can occur in the indoor environment, especially when considering the fact most people stay much more indoors than outdoors. The study also confirms previous similar indications attained with grass pollen allergens, in that the allergenic particles tend to penetrate ventilation filters to a greater extent than other airborne particles.

  • 3.
    Mattsson, Magnus
    et al.
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för inomhusmiljö.
    Andersson, Lars T
    University of Gävle, Department of Mathematics, Natural and Computer Sciences, Ämnesavdelningen för naturvetenskap.
    Jansson, Anders
    Stockholms Universitet, ITM.
    Holmquist, Leif
    Timanställd vid HiG.
    Vesterberg, Olof
    Timanställd vid HiG.
    Alm Kübler, Kerstin
    Naturhistoriska riksmuséet, Palynologiska laboratoriet.
    Ekebom, Agneta
    Naturhistoriska riksmuséet, Palynologiska laboratoriet.
    Ventilation filter efficiency for particles and grass pollen allergens2009In: Proceedings of the 9th International Healthy Buildings Conference and Exhibition: HEALTHY BUILDINGS 2009, Paper No: 460. / [ed] Santanam, S., Bogucz, E.A., Peters, C., Benson, T., 2009Conference paper (Refereed)
    Abstract [en]

    In an experimental study, commonly used ventilation fine filters were tested regarding their efficiency in collecting airborne particles and grass pollen allergens from outdoor air. Grass pollen allergen and particle number concentrations were measured before and after the filters, enabling collection efficiency calculations. Simultaneously, the size distribution of grass pollen allergens was measured in outdoor air using a cascade impactor. The study confirms previous indications that pollen allergens occur in the outdoor air as particles much smaller than pollen grains, and can penetrate ventilation filters to a larger extent than might be expected. The initially high collection efficiency of synthetic, electrostatically charged filters declined significantly with time of use (dust load), whereas glass fiber filters showed steady performance. A slight tendency for pollen allergenic matter to penetrate ventilation filters more than other airborne particles was noted, but no difference in the response to electrostatic charge of filters could be seen.

  • 4.
    Sarbak, Zenon
    et al.
    Laboratory of Adsorption and Catalysis for Environmental Protections, Faculty of Chemistry, A. Mickiewicz University, Poznań, Poland.
    Andersson, Lars T
    University of Gävle, Department of Mathematics, Natural and Computer Sciences, Ämnesavdelningen för naturvetenskap.
    Effect of support and loading on oxidation of methane over platinum catalysts2007In: Reaction Kinetics and Catalysis Letters, ISSN 0133-1736, E-ISSN 1588-2837, Vol. 92, no 2, p. 231-238Article in journal (Refereed)
    Abstract [en]

    Catalytic combustion of methane was carried out using platinum catalysts supported on low-and high-surface area alumina (denoted respectively as LSA and HSA) and platinum supported on silica. Methane conversion was the highest for platinum supported on LSA alumina, smaller for Pt/HSA alumina and the smallest for Pt/silica. However, the 3 wt.% Pt/HSA catalyst was found to show the highest selectivity.

  • 5.
    Wahlborg, Dan
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering.
    Björling, Mikael
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering.
    Andersson, Lars T
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering.
    Allergenic potency of birch pollen2016In: Indoor Air 2016: The 14th International Conference of Indoor Air Quality and Climate, July 3-8 2016, Ghent, Belgium. Conference Proceedings / [ed] E. Van Kenhove, J. Laverge, P. De Vlieger, ISIAQ , 2016, article id 553Conference paper (Refereed)
    Abstract [en]

    The number of people sensitized to the major birch pollen allergen Bet v 1 in industrialized countries is vast and still rising. The purpose of this study was to develop a method with sensitivity high enough to measure the Bet v 1 content of a few birch pollen grains without the interference of environmental factors such as diesel particles, ozone level, humidity, temperature and precipitation. Grains were collected from catkins at two locations in Sweden over a period of 5 years. Allergens were extracted over polytetrafluoroethylene (PTFE) filters and Bet v 1 quantification was made with a luminescence immunoassay. The average content of Bet v 1 was 3.6 ± 0.6 pg per pollen grain for samples collected in three different pollination seasons. This is the first in a series of controlled experiments on the release of the major allergen Bet v 1 from birch pollen grains.

    Download full text (pdf)
    Allergenic potency of birch pollen
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf