hig.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hed, Göran
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för byggnadskvalitet.
    Service Life Estimations in the Design of a PCM Based Night Cooling System2005Doctoral thesis, monograph (Other scientific)
    Abstract [en]

    The use of Phase Change Material, PCM, to change the thermal inertia of lightweight buildings is investigated in the CRAFT project C-TIDE. It is a joint project with Italian and Swedish partners, representing both industry and research. PCMs are materials where the phase change enthalpy can be used for thermal storage. The Swedish application is a night ventilation system where cold night air is used to solidify the PCM. The PCM is melted in the day with warm indoor air and thereby the indoor air is cooled. The system is intended for light weight buildings with an overproduction of heat during daytime. In the thesis, the results of experiments and numerical simulations of the application are presented. The theoretical background in order design the heat exchanger and applying the installation in thermal simulation software is presented. An extensive program is set up, in order to develop test methods and carry tests to evaluate the performance over time of the PCM. Testing procedures are set up according to ISO standards concerning service life testing. The tests are focused on the change over time of the Thermal Storage Capacity (TSC) in different temperature spans. Measurements are carried out on large samples with a water bath calorimeter. The service life estimation of a material is based on the performance of one or more critical properties over time. When the performances of these properties are below the performance requirements, the material has reached its service life. The critical properties of the PCM are evaluated by simulation of the application. The performance requirements of the material are set up according to general requirements of PCM and requirements according to building legislation. The critical properties of a PCM are the transition temperature, the melting temperature range and the TSC in the operative temperature interval. The critical property of the application is its energy efficiency.

    The results of the study show that the night cooling system will lower the indoor air temperature during daytime. It also shows that the tested PCM does not have a clear phase change, but an increased specific heat in the operative temperature interval. Increasing the amount of material, used in the application, can compensate this. Finally, the tested PCM is thermally stable and the service life of the product is within the range of the design lives of the building services. It is essential to for all designers to know the performance over time of the properties of PCMs. Therefore it is desirable that standardized testing methods of PCM are established and standardized classification systems of PCMs are developed.

  • 2.
    Hed, Göran
    University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för byggnadskvalitet.
    Service Life Planning in Building Design2000Report (Other academic)
  • 3.
    Hed, Göran
    et al.
    University of Gävle, Department of Technology and Built Environment.
    Bellander, R
    Mathematical modelling of PCM air heat exchanger2006In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 38, no 2, p. 82-89Article in journal (Refereed)
    Abstract [en]

    In order to cool a room with a cold night air phase change material, PCM, is stored in an air heat exchanger. During night the PCM crystallises, energy is released. During daytime air is circulated in the unit, energy is absorbed and the indoor air is cooled. The characteristic of PCM is that there is an increase of the specific heat over a limited temperature span. This is the principle that is used in the design of the PCM air heat exchanger unit. The action of a PCM storage unit will act differently depending of the thermal properties of the material. In an ideal material the phase transition occurs at a given temperature. On the market, compounds containing PCM are available which, in order to create a suitable melting temperature, are mixtures of different products. In these materials, the transition from liquid to solid takes place over a temperature span, i.e. the specific heat varies with the temperature. This can be represented by a c(p)(T) curve, specific heat as a function of the temperature. In this paper, the development of a mathematical model of the PCM air heat exchanger is presented. Considerations are taken to different shapes of the cp(T) curve. The mathematical model is verified with measurement on a prototype heat exchanger. The development of the equipment is part of the CRAFT project Changeable Thermal Inertia Dry Enclosures (C-TIDE) the possibility of use of phase change materials integrated into a building is explored. 

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf