hig.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Lane, Anna-Lena
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology. RISE Research Institutes of Sweden.
    Boork, Magdalena
    RISE Research Institutes of Sweden.
    Thollander, Patrik
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Barriers, driving forces and non-energy benefits for battery storage in photovoltaic (PV) systems in modern agriculture2019In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, no 18, article id 3568Article in journal (Refereed)
    Abstract [en]

    Battery storage has been highlighted as one way to increase the share of renewables in energy systems. The use of local battery storage is also beneficial when reducing power variations in the grid, thereby contributing to more robust and cost-effective energy systems. The purpose of this paper is to investigate barriers, drivers and non-energy benefits (NEB) for investments in battery storage in photovoltaic systems (PV) in the context of farmers with PV systems in Sweden. The study is based on a questionnaire about barriers, driving forces and NEB for investment in battery storage connected to PV. The questionnaire was sent to farmers in Sweden who already have photovoltaics installed and about 100 persons answered, a response rate of 59%. The major barriers found are related to the technical and economic risks of investing in battery storage. One of the main conclusions is that the highest-ranked driver, i.e., to use a larger part of the produced electricity oneself, turns out to be the highest priority for the grid-owner seeking to reduce the need for extensive investments in the grid. The primary NEBs found were the possibility of becoming independent from grid electricity.

  • 2.
    Lane, Anna-Lena
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. SP Technical Research Institute of Sweden.
    Cehlin, Mathias
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Gustavsson, Thorbjörn
    SP Technical Research Institute of Sweden.
    ByggaE – Method for Quality Assurance of Energy Efficient Buildings2017In: International Journal of Energy Production and Management, ISSN 2056-3272, E-ISSN 2056-3280, Vol. 2, no 2, p. 133-139Article in journal (Refereed)
    Abstract [en]

    Policies for energy efficiency requirements in buildings have become more stringent according to EU2020 goals. Despite policy regulations, requirements for energy efficiency are not met in many new buildings. Some of the reasons for this energy performance gap are related to the building process. The aim with this paper is to describe a purposed method for quality assurance of sustainable buildings according to energy efficiency. The proposed method is called ByggaE, where ‘Bygga’ is the Swedish word for ‘build’ and E is the first letter in ‘energy efficient’. It is a tool intended to lower the energy performance gap related to the building process by guiding the client and providers through the process to fulfill goals. The essence of ByggaE is the formulation of requirements by the client and the working process of identifying, handling and following up critical constructions and key issues. This working process involves all participants in the building project by using appropriate quality guidelines and checklists for documentation, communication and verification. ByggaE is a step forward ensuring that the building fulfills the defined functions and that conscious decisions are taken when goals have to be changed during the building project. The next steps are to ensure the usefulness of the method in practice by more testing and to spread knowledge about the method.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf