hig.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Råsander, Mikael
    et al.
    Department of Materials, Imperial College London, London, UK.
    Hugosson, Håkan Wilhelm
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electronics, Mathematics and Natural Sciences, Physics.
    Delin, Anna
    Department of Applied Physics, Kungliga Tekniska Hogskolan, Stockholm, Sweden.
    Density functional study of carbon vacancies in titanium carbide2018In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 30, no 1, article id 015702Article in journal (Refereed)
    Abstract [en]

    It is well established that TiC contains carbon vacancies not only in carbon-deficient environments but also in carbon-rich environments. We have performed density functional calculations of the vacancy formation energy in TiC for C- as well as Ti-rich conditions using several different approximations to the exchange-correlation functional, and also carefully considering the nature and thermodynamics of the carbon reference state, as well as the effect of varying growth conditions. We find that the formation of carbon vacancies is clearly favorable under Ti-rich conditions, whereas it is slightly energetically unfavorable under C-rich conditions. Furthermore, we find that the relaxations of the atoms close to the vacancy site are rather long-ranged, and that these relaxations contribute significantly to the stabilization of the vacancy. Since carbon vacancies in TiC are experimentally observed also in carbon-rich environments, we conclude that kinetics may play an important role. This conclusion is consistent with the experimentally observed high activation energies and sluggish diffusion of vacancies in TiC, effectively causing a freezing in of the vacancies.&#13.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf