hig.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Carlos-Pinedo, Sandra
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Environmental Science.
    Wang, Zhao
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Environmental Science.
    Eriksson, Ola
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Environmental Science.
    Methane yield from SS-AD: Experiences to learn by a full spectrum analysis at laboratory-, pilot- and full-scale2019In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 127, article id 105270Article, review/survey (Refereed)
    Abstract [en]

    Solid-state anaerobic digestion (SS-AD) takes place when solid content of the substrate is higher than 15%. Some advantages of this technology have been recognized as e.g., less required water added to raw feedstock and consequently minimized digester size and cost, higher volumetric organic loading rates (OLR) that may lead to higher efficiency methane yield and better acceptance of a wide range of feedstocks. However, scientific studies of SS-AD at pilot- and full-scale are very few and difficulties have been reported in operating SS-AD, especially when the system undergoes a scale-up, where methane production is the purpose. As a result, this review gives a summary of scientific studies for SS-AD processes at laboratory-, pilot- and full-scale, where a great diversity of substrate composition, reactor design and operational parameters have been categorized, and their performances in terms of methane yield have been analyzed. This, in turn, helps to identify that factors affecting methane yields at different scales arise mainly from operational conditions as well as the characteristic of feedstocks. This review even contributes to suggest several strategies for improvement of methane yield at full-scale.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf