hig.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 4 av 4
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Raeesi, Mohammad
    et al.
    Bergen, Norway.
    Zarifi, Zoya
    Department of Earth Sciences, University of Western Ontario, London, Canada.
    Nilfouroushan, Faramarz
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Lantmäteriet, Gävle, Sweden.
    Boroujeni, Samar
    Department of Earth Sciences, Uppsala University, Uppsala, Sweden.
    Tiampo, Kristy
    CIRES; Department of Geological Sciences, University of Colorado at Boulder, Boulder, CO, USA.
    Quantitative Analysis of Seismicity in Iran2017Ingår i: Pure and Applied Geophysics, ISSN 0033-4553, E-ISSN 1420-9136, Vol. 174, nr 3, s. 793-833Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We use historical and recent major earthquakes and GPS geodetic data to compute seismic strain rate, geodetic slip deficit, static stress drop, the parameters of the magnitude–frequency distribution and geodetic strain rate in the Iranian Plateau to identify seismically mature fault segments and regions. Our analysis suggests that 11 fault segments are in the mature stage of the earthquake cycle, with the possibility of generating major earthquakes. These faults primarily are located in the north and the east of Iran. Four seismically mature regions in southern Iran with the potential for damaging strong earthquakes are also identified. We also delineate four additional fault segments in Iran that can generate major earthquakes without robust clues to their maturity.The most important fault segment in this study is the strike-slip system near the capital city of Tehran, with the potential to cause more than one million fatalities.

  • 2.
    Sjöberg, Lars E.
    et al.
    Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden .
    Tenzer, Robert
    School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan, China .
    On Gravity Inversion by No-Topography and Rigorous Isostatic Gravity Anomalies2015Ingår i: Pure and Applied Geophysics, ISSN 0033-4553, E-ISSN 1420-9136, Vol. 172, nr 10, s. 2669-2680Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We discuss some theoretical aspects and practical consequences of using traditional versus “new”/rigorous formulations of the Bouguer and isostatic gravity anomalies/disturbances. In principle, the differences between these two concepts are in the definition of the so-called secondary indirect topographic effect (SITE) on the gravity data. Although we follow the tradition to call this effect SITE, we show that it is formally a direct topographic effect (DITE), needed to remove all topographic signal, but in practice not regarded as such. Consequently, there is a need for a no-topography gravity anomaly, which removes all topographic effects, leaving the below-crust Earth transparent for gravity inversion. Similarly, a rigorous isostatic gravity anomaly includes also a compensation effect for the SITE. By using a simple topographic model, we confirm a theoretically found ratio of 2/(n + 1) between the magnitudes of the SITE and DITE by wavelength (spherical harmonic degree n), both for the Bouguer and isostatic gravity anomalies. Finally, global gravity inversions are applied by utilizing the Vening Meinesz-Moritz isostatic model to determine the Moho geometry using the Bouguer gravity disturbances/anomalies and the no-topography gravity anomalies, and the results are compared. The numerical results confirm our theoretical findings that the Bouguer gravity disturbances and the no-topography gravity anomalies provide very similar results. A comparison of these gravimetrically computed Moho depths with the CRUST1.0 seismic model shows rms agreements of 4.3 and 4.5 km, respectively. This is a significant improvement when compared to the Moho result obtained by using the Bouguer gravity anomalies, yielding the rms difference of 7.3 km for the CRUST1.0 model. These results confirm a theoretical deficiency of the classical definition of the Bouguer and isostatic gravity anomalies, which do not take into consideration the SITE effects on the topography and its compensation. 

  • 3.
    Tenzer, Robert
    et al.
    Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong, China.
    Chen, Wenjin
    Department of Geodesy and Geomatics, Wuhan University, Wuhan, China.
    Baranov, Alexey
    Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russian Federation; Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russian Federation.
    Bagherbandi, Mohammad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden.
    Gravity maps of Antarctic lithospheric structure from remote-sensing and seismic data2018Ingår i: Pure and Applied Geophysics, ISSN 0033-4553, E-ISSN 1420-9136, Vol. 175, nr 6, s. 2181-2203Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth’s interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic–Indian and Pacific–Antarctic mid-oceanic ridges and it is possibly formed by two major fault segments. Gravity lows over the Transantarctic Mountains confirms their non-collisional origin. Additionally, more localized gravity lows closely coincide with known locations of hotspots and volcanic regions (Marie Byrd Land, Balleny Islands, Mt. Erebus). Gravity lows also suggest a possible hotspot under the South Orkney Islands. However, this finding has to be further verified.

  • 4.
    Zarifi, Zoya
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Geofysik..
    Nilfouroushan, Faramarz
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Berggrundsgeologi.
    Raeesi, Mohammad
    Department of Earth Science, University of Bergen, Bergen, Norway.
    Crustal stress Map of Iran: Insight from seismic and geodetic computations2014Ingår i: Pure and Applied Geophysics, ISSN 0033-4553, E-ISSN 1420-9136, Vol. 171, nr 17, s. 1219-1236Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We used the focal mechanisms of crustal earthquakes (depth <40 km) in the period 1909-2012 and the available GPS velocities, estimated from the data collected between 1999 to 2011, to estimate the magnitude and directions of maximum principal stress and strain rates in Iran. The Pearson product moment correlation was used to find the correlation between the stress field obtained from the focal mechanism stress inversion and that obtained using the seismic and geodetic strain rates. Our assumption is that stresses in a continuum are produced by tectonic forces and the consequent deformation on the crustal scale. Therefore, the direction of the stress and strain (or strain rate) are ideally be the same. Our results show a strong correlation between the directions of the principal components of stress and strain (rate) obtained using the different data/methods.  Using  weighted average analysis, we present a new stress map for Iran.

1 - 4 av 4
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf