hig.sePublications
Change search
Refine search result
12 1 - 50 of 76
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alcoverro Colom, Pau
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    A new energy model for the Lakshadweep islands: Change from a diesel-based model to a hybrid model with renewable energy systems considering the ecological fragility of the islands2019Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
  • 2.
    Ameen, Arman
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Cehlin, Mathias
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Reducing energy usage in multi-family housing2019In: 2019 9th International Conference on Future Environment and Energy 9–11 January 2019, Osaka, Japan, Institute of Physics Publishing (IOPP), 2019, Vol. 257, article id 012030Conference paper (Refereed)
    Abstract [en]

    The energy usage in residential sector have been around 22% of the total energy use in the world and increasing due to the population growth and higher living standards. The energy sources for this are made up primarily of non-renewable energy resources which generates a large amount of global greenhouse gases. A lot of countries have implemented various regulations and rules to reduce the energy usage in buildings and promoting the use of renewable energy technologies. This paper presents a parametric study of a typical multi-family building in its pre-design stage. The climate location used is Sweden (Gothenburg) and Japan (Osaka). The aim of the study is to compare various configurations and to examine how they affect the energy use. The most interesting configurations are the use of heat pump and solar cells. Other configurations that are examined are infiltration levels, pressure coefficients, wind impact, ventilation with heat recovery, ventilation scheduling, building orientation and finally changing U-values in the building material. Results of this study show that the energy saving, by utilizing a heat pump and solar panels, can reduce the total energy use by 34.9% for Gothenburg and 32% for Osaka. The results also show that the difference in total energy use between the two cities reduce substantially (3% difference) when utilizing a heat pump in combination with solar panels.

  • 3.
    Ameen, Arman
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Cehlin, Mathias
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Larsson, Ulf
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Karimipanah, Taghi
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Experimental Investigation of Ventilation Performance of Different Air Distribution Systems in an Office Environment: Heating Mode2019In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, no 10, article id 1835Article in journal (Refereed)
    Abstract [en]

    A vital requirement for all-air ventilation systems are their functionality to operate both in cooling and heating mode. This article experimentally investigates two newly designed air distribution systems, corner impinging jet (CIJV) and hybrid displacement ventilation (HDV) in comparison against a mixing type air distribution system. These three different systems are examined and compared to one another to evaluate their performance based on local thermal comfort and ventilation effectiveness when operating in heating mode. The evaluated test room is an office environment with two workstations. One of the office walls, which has three windows, faces a cold climate chamber. The results show that CIJV and HDV perform similar to a mixing ventilation in terms of ventilation effectiveness close to the workstations. As for local thermal comfort evaluation, the results show a small advantage for CIJV in the occupied zone. Comparing C2-CIJV to C2-CMV the average draught rate (DR) in the occupied zone is 0.3% for C2-CIJV and 5.3% for C2-CMV with the highest difference reaching as high as 10% at the height of 1.7 m. The results indicate that these systems can perform as well as mixing ventilation when used in offices that require moderate heating. The results also show that downdraught from the windows greatly impacts on the overall airflow and temperature pattern in the room.

  • 4.
    Ameen, Arman
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Cehlin, Mathias
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Larsson, Ulf
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Karimipanah, Taghi
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Experimental investigation of ventilation performance of different air distribution systems in an office environment – cooling mode2019In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, no 7, article id 1354Article in journal (Refereed)
    Abstract [en]

    The performance of a newly designed corner impinging jet air distribution method with an equilateral triangle cross section was evaluated experimentally and compared to that of two more traditional methods (mixing and displacement ventilation). At nine evenly chosen positions with four standard vertical points, air velocity, turbulence intensity, temperature, and tracer gas decay measurements were conducted for all systems. The results show that the new method behaves as a displacement ventilation system, with high air change effectiveness and stratified flow pattern and temperature field. Both local air change effectiveness and air exchange effectiveness of the corner impinging jet showed high quality and promising results, which is a good indicator of ventilation effectiveness. The results also indicate that there is a possibility to slightly lower the airflow rates for the new air distribution system, while still meeting the requirements for thermal comfort and indoor air quality, thereby reducing fan energy usage. The draught rate was also lower for corner impinging jet compared to the other tested air distribution methods. The findings of this research show that the corner impinging jet method can be used for office ventilation.

  • 5.
    Ameen, Arman
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Choonya, Gasper
    Cehlin, Mathias
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Experimental Evaluation of the Ventilation Effectiveness of Corner Stratum Ventilation in an Office Environment2019In: Buildings, ISSN 2075-5309, E-ISSN 2075-5309, Vol. 9, no 7, article id 169Article in journal (Refereed)
    Abstract [en]

    An experimental study was conducted in a room resembling an office in a laboratory environment. The study involved investigating the ability of corner-placed stratum ventilation in order to evaluate the ventilation’s effectiveness and local thermal comfort. At fixed positions, the air temperature, air velocity, turbulence intensity, and tracer gas decay measurements were carried out. The results show that corner-placed stratum ventilation behaves very similar to a mixing ventilation system when considering air change effectiveness. The performance of the system was better at lower supply air flow rates for heat removal effectiveness. For the heating cases, the draught rates were all very low, with the maximum measured value of 12%. However, for the cooling cases, the maximum draught rate was 20% and occurred at ankle level in the middle of the room.

  • 6.
    Andersson, Emelie
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Aziz, Shniar
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    En jämförelse mellan gröna-, metall- och gråa tak för ett oisolerat parkeringshus utifrån dess olika temperaturer och dagvattenhantering2019Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Since climate change increases and changes constantly, it contributes to higher average temperatures, ice melting and has a great impact on our ecosystem. This will then lead to a warmer climate, which means increased precipitation and milder winters. One of the reasons to climate change is urbanization, meaning people moving to the cities. To succeed in changing the climate, international cooperation and common goals are required. At the northern part of Brynäs, in the municipality of Gävle, work is currently in progress around the area where the factory of Läkerol was once standing. The area continues to be rebuilt and the outcome will eventually be called Godisfabriken. There, amongst other, a car park will be built for the newly built homes. The aim of this study is to compare metal roofs, grey concrete roofs and green roofs within the two aspects of stormwater management and temperature. Then analyse which alternative of these three roofs would be most advantageous for the car park of Godisfabriken.

     

    The focused roofs are green, metal and concrete. A green roof is when it's completely or partly covered by a layer of vegetation and metal roofs are different sheet roofs with steel and aluminium-zinc. Grey roofs are made of concrete which works as both floor and ceiling. A building's roof affects which air temperature the surroundings has with its slope, vegetation and surrounding buildings. Another problem with urbanization and a warmer climate is stormwater management, which means rain and melted snow from roofs, parking areas and other hard surfaces.

     

    The method includes a literature study and calculations. The literature study gave research on temperature for all roofs as well as stormwater management for green roofs. Calculations were made for stormwater management and temperature with its flow, absorption, reflectance and heat transfer.

     

    The literature study and the calculations showed that green roofs have a high SRI value of 80 while the remaining roof is at around 40. The higher SRI, the lower surface temperatures on the material. This is proven in both methods when green roofs according to the literature study received a maximum surface temperature of 38 °C and 48 °C. According to the literature study green roofs can preserve more than 50 % of the rainwater. They also had a water flow rate of 1.97 l/s, which is less than half of what the metal roof got in the calculations. Since green roofs had both low air and surface temperatures, as well as longer drainage times and most absorbed water, green roofs are a more suitable choice than metal and grey concrete.

  • 7.
    Andersson, Harald
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Numerical and experimental study of confluent jets supply device with variable airflow2019Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    In recent years, application of confluent jets for design of ventilation supply devices has been studied. Similarly, numerus studies have been made on the potential and application of variable air volume (VAV) in order to reduce the energy demand of ventilation systems. This study investigates the combination of supply devices based on confluent jets and VAV, both in terms of the nearfield flow behavior of the device and the impact on thermal comfort, indoor air quality and energy efficiency on a classroom-level space when the airflow rate is varied.

    The method used in this study is an experimental field study where the confluent jets-based supply devices were compared to the previously installed displacement ventilation. The field study evaluated the energy efficiency, thermal comfort and indoor air quality of the two systems. In the case of the confluent jets supply devices, airflow rate was varied in order to see what impact the variation had on the performance of the system for each airflow rate. Furthermore, the confluent jets supply devices were investigated both experimentally and numerically in a well insulated test room to get high resolution data on the particular flow characteristics for this type of supply device when the airflow rate is varied. The results from the field study show nearly uniform distribution of the local mean age of air in the occupied zone, even in the cases of relatively low airflow rates. The airflow rates have no significant effect on the degree of mixing. The thermal comfort in the classroom was increased when the airflow rate was adapted to the heat load compared to the displacement system. The results lead to the conclusion that the combination of supply devices based on confluent jets can reduce energy usage in the school while maintaining indoor air quality and increasing the thermal comfort in the occupied zone.

    The results from the experimental and numerical study show that the flow pattern and velocity in each nozzle is directly dependent on the total airflow rate. However, the flow pattern does not vary between the three different airflow rates. The numerical investigation shows that velocity profiles for each nozzle have the same pattern regardless of the airflow rate, but the magnitude of the velocity profile increases as the airflow increases. Thus, a supply device of this kind could be used for variable air volume and produce confluent jets for different airflow rates.

    The results from both studies show that the airflow rate does not affect the distribution of the airflow on both near-field and room level. The distribution of air is nearly uniform in the case of the near-field results and the room-level measurement shows a completely uniform degree of mixing and air quality in the occupied zone for each airflow rate. This means that there is potential for combining these two schemes for designing air distribution systems with high energy efficiency and high thermal comfort and indoor air quality.

  • 8.
    Andersson, Martin
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Jonsson, Andreas
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Nyström, Niklas
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Insvällning av olimmade och limmade trädymlingar2019Independent thesis Basic level (degree of Bachelor), 180 HE creditsStudent thesis
    Abstract [en]

    Wood is a renewable material, unlike many other building materials. The amount of wood used in the construction industry can be increased by using wooden dowels as a substitute for screws and nails. Screws and nails are made of metals, which are non-renewable materials. The manufacturing process of metal-based materials is more energy consuming than it is for wooden materials and therefore it has a greater impact on our global environment.The purpose of this study was to investigate the adhesion capacity of wooden dowel-joints, non-glued and glued made out of beech and pine. The attachment of the non-glued wooden dowels was achieved by swelling of the wood. Swelling was achieved by first drying the wooden dowels in an oven and then letting them acclimatize with the surrounding materials and the relative air humidity. The adhesion capacity of the wooden dowels should be able to compete with the withdrawal strength of nails to be practically useful.Tensile strength tests have been carried out in the laboratory in house 45 at the University of Gavle to determine the adhesion capacity of wooden dowel-joints. The tensile strength tests were performed with a Shimadzu AG-X machine. The results of the tests have been compared with the theoretical withdrawal strength for nails. Characteristic strength values have also been calculated from the tensile strength test results for the wooden dowels.The results of the study shows that only the glued wooden dowels can compete with the withdrawal strength of nails. Glued wooden dowels can therefore be a substitute for screws and nails. The calculated characteristic values for glued beech-dowels and glued pine-dowels are 5,2 kN respectively 4,3 kN.

  • 9.
    Bahrami, Alireza
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology. Department of Civil Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran.
    Matinrad, Sina
    Department of Civil Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran.
    Response of steel beam-to-column bolted connections to blast loading2019In: International Journal of Recent Technology and Engineering, ISSN 2277-3878, Vol. 8, no 3, p. 3639-3648Article in journal (Refereed)
    Abstract [en]

    In this research, response of steel beam-to-column bolted connections to blast loading is investigated. Nonlinear analyses of the connections are performed using the finite element software ABAQUS. In order to demonstrate the accuracy of the finite element modelling, an experimental test of a steel beam-to-column bolted connection is modelled. Comparison of the obtained result from the modelling with that of the corresponding experimental test verifies the modelling. Then, a 5-storey steel building is designed using ETABS software from which a beam-to-column connection of the ground floor is selected for the nonlinear analysis in ABAQUS. Thereafter, the components of the selected connection are designed. Finally, the connection is nonlinearly analysed considering parameters as the distance from the blast centre (2.5 m, 5 m, and 10 m) and blast power (500 kg, 1000 kg, and 2000 kg TNT equivalent mass of explosive). Effects of these parameters on the response of the connection are evaluated. Failure modes of the connections are assessed, too.

  • 10.
    Bahrami, Alireza
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Yavari, Mojtaba
    Department of Civil Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran.
    Hysteretic assessment of steel-concrete composite shear walls2019In: International Journal of Recent Technology and Engineering, ISSN 2277-3878, Vol. 8, no 2, p. 5640-5645Article in journal (Refereed)
    Abstract [en]

    This paper focuses on the hysteretic assessment of steel-concrete composite shear walls with reinforced concrete on one side of the steel plate. Finite element software ABAQUS is utilised to conduct this research. An experimental test on a composite shear wall is simulated to do the verification of the modelling. Then, modelling result is compared with the experimental test result which shows an insignificant difference between them and therefore uncovers the accuracy of the modelling. Thereafter, different parameters are considered to investigate their effects on the response of the walls. Thickness of reinforced concrete, steel plate thickness, and number of shear studs are studied as parameters. It is concluded that changing reinforced concrete thickness and number of shear studs do not considerably affect the ultimate load capacity, ductility, and energy dissipation of the walls. However, increasing the steel plate thickness enhances the ultimate load capacity, ductility, and energy dissipation. In addition, out-of-plane displacement of the walls is evaluated.

  • 11.
    Balciunas, Dominykas
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Thermoeconomic analysis of LNG physical exergy use for electricity production in small-scale satellite regasification stations2019Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Liquefied natural gas (LNG) cold utilization in small scale regasification stations is a novel topic in the industry, while such systems have been proven feasible in large scale LNG facilities. Cold recovery and utilization in LNG regasification facilities would increase the thermodynamic efficiency and reduce cold pollution. The aim of the study is to analyze the possibility to apply industry-proven thermodynamic cycles in small scale satellite regasification stations for electricity production, taking the characteristics of a real-world regasification station project in Druskininkai, Lithuania for which useful cold utilization is not currently planned.

    Direct Expansion (DE) and Rankine (ORC) Cycles are analyzed together with cascading using Aspen Hysys software to find the optimal solution considering thermal and exergy efficiency as well as the payback period.

    Thermoeconomically feasible retrofit solutions of approximately 13% thermal efficiency and approximately 17% exergy efficiency showing payback periods of 5 to 10 years and 3.3 to 6 thousand euro additional capital expenditure (CAPEX) per net kW of power production are found.

    Increase in complexity of thermodynamic cycles is directly proportional to both increased thermodynamic efficiencies and capital costs and the study proves that there is a limit at which increase in thermodynamic efficiency of a cycle by cascading becomes economically infeasible. Future work is suggested to improve the accuracy of the results by rigorous design to evaluate pressure drops as well as improvements in economic analysis by utilizing the discounted cash flow methodology. Sensitivity analysis of LNG physical and chemical conditions as well as ambient air could be performed whereas changes in working fluid and better engineering of the part related to intial heat exchange could improve thermodynamic efficiencies. Alternative solutions with a higher temperature heat source are also suggested.

  • 12.
    Blomberg, Emil
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Boqvist, Simon
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Lauridsen, Markus
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Tvärkraftsförstärkning av limträ med inlimmade gängstänger2019Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Syftet med studien var att undersöka hur tvärkraftskapaciteten i limträ påverkades om den förstärktes med inlimmade gängstänger samt att studera samverkan mellan limträ och gängstänger.

    En litteraturstudie genomfördes för att ta del av tidigare forskning. Förstärkning av tvärkraftskapaciteten hos limträbalkar är ett område där begränsad forskning skett. Ahlskog och Ross (2015) berörde detta område om hur limträ förstärkts mot tvärkraftbrott med pålimmade träribbor på utsidan. Resultatet från Ahlskog och Ross (2015) visade att deras förstärkningsmetod medförde en ökad tvärkraftskapacitet på 11 %. Denna studie var en vidareutveckling på Ahlskog och Ross (2015) arbete men med en ny förstärkningsmetod med inlimmade gängstänger i olika vinklar mot fiberriktningen.

    Testet bestod av fem olika provserier med åtta prover i varje serie. Provserie 1 var oförstärkt. Provserie 2 och 4 var förstärkta med inlimmade gänstänger i två olika vinklar mot fiberriktningen och testades med avseende för tvärkraftkapaciteten och jämfördes mot den oförstärkta. Provserie 3 och 5 var förstärkta på samma sätt som provserie 2 och 4 men provbitarna var klyvda i mitten och testades med avseende på gängstängernas hållfasthet och jämfördes mot provserie 2 och 4 för att undersöka samverkan. Provbitarna skruvades fast i två anhåll som placerades i tryckprovmaskinen som utsatte provbitarna med belastning tills brott inträffade. Maskinen var kopplad till en dator som registrerade samtliga värden i maskinens datorprogram Trapezium X.

    Studien resulterade i en ökning av tvärkraftkapaciteten på 13 % för provserie 2 förstärkt 45° och 1,0 % för provserie 4 förstärkt 90° jämfört med provserie 1. Samverkan mellan limträ och gängstänger resulterade i 32 % samverkan för provserie 2 förstärkt 45° och 4 % samverkan för provserie 4 förstärkt 90°. Resultatet hade förbättrats och visat en tydligare ökning av tvärkraftskapaciteten om fler felkällor hade beaktats i ett tidigare skede. En av dessa felkällor var torrsprickor, vilket resulterade i att provbitarna gav ett lägre värde gentemot de teoretiska beräkningarna.

  • 13.
    Blomqvist, Stefan
    et al.
    Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Amiri, Shahnaz
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology. Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Rohdin, Patrik
    Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Ödlund, Louise
    Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Analyzing the performance and control of a hydronic pavement system in a district heating network2019In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, no 11, article id 2078Article in journal (Refereed)
    Abstract [en]

    A hydronic pavement system (HPS) is an alternative method to clear snow and ice, which avoids the use of salt, sand, and fossil fuel in conventional snow clearance, and minimizes the risk of accidents. The aim is to analyze the performance of different control strategies for a 35,000 m2 HPS utilizing heat from a district heating and cooling (DHC) system. The key performance indicators are (1) energy performance of the HPS, and (2) primary energy use, (3) electricity production and (4) greenhouse gas (GHG) emissions from the DHC system. The methodology uses a simulation model of the HPS and an optimization model of the DHC system. Three operational strategies are analyzed: A reference scenario based on the current control strategy, and scenarios where the HPS is shut down at temperatures below −10 ◦C and −5 ◦C. The study shows that the DHC return temperature is suitable for use. By operational strategies, use during peak demand in the DHC system can be avoided, resulting in reduced use of fossil fuel. Moreover, the energy use of the HPS could be reduced by 10% and the local GHG emissions by 25%. The study emphasizes that the HPS may have positive effects on global GHG emissions, as it enables electricity production from renewable resources. 

  • 14.
    Bondsman, Benjamin
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Al, Barzan
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Hedlund, Felix
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Dimensionering av höga balkar enligt fackverksanalogi: -En parametrisk studie2019Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
  • 15.
    Buccolieri, Riccardo
    et al.
    Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Wigö, Hans
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Di Sabatino, Silvana
    Department of Physics and Astronomy, University of Bologna, Bologna, Italy.
    The drag force distribution within regular arrays of cubes and its relation to cross ventilation – Theoretical and experimental analyses2019In: Journal of Wind Engineering and Industrial Aerodynamics, ISSN 0167-6105, E-ISSN 1872-8197, Vol. 189, p. 91-103Article in journal (Refereed)
    Abstract [en]

    A novel set of wind tunnel measurements of the drag force and its spatial distribution along aligned arrays of cubes of height H and planar area index λ p (air gap between cubes) equal to 0.028 (5H) to 0.69 (0.2H) is presented and analysed. Two different types of measurements are compared: one type where the drag force is obtained using the standard load cell method, another type where the drag force is estimated by measuring the pressure difference between windward and the leeward façades. Results show that the drag force is nearly uniformly distributed for lower λ p (0.028 and 0.0625), it decreases up to 50% at the second row for λ p = 0.11, and it sharply decreases for larger λ p (from 0.25 to 0.69) where the force mostly acts on the first row. It follows that for the lowest λ p the drag force typically formulated as a drag area corresponds to the total frontal area of the array, whereas for large λ p the drag area corresponds to the area of the first row. By assessing the driving pressure for ventilation from the drag force, the analysis is extended to estimate the cross ventilation as an example of application of this type of measurements. 

  • 16.
    Cabral, Diogo
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Costeira, João
    Department of Earth Sciences, University of Minho, Portugal.
    Gomes, João
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Electrical and Thermal Performance Evaluation of a District Heating System Composed of Asymmetric low concentration PVT Solar Collector Prototypes2018In: PROCEEDINGS OF THE ISES EUROSUN 2018 CONFERENCE - 12TH INTERNATIONAL CONFERENCE ON SOLAR ENERGY FOR BUILDINGS AND INDUSTRY / [ed] Haberle, A., INTL SOLAR ENERGY SOC , 2018, p. 755-763Conference paper (Refereed)
    Abstract [en]

    Photovoltaic-Thermal (PVT) solar collectors generate electricity and heat from the same gross area. The annual electrical and thermal yields of these systems are dependent on the PVT collector technology, as well as the climate and the type of solar thermal system implemented. This review presents an evaluation of a district heating system composed of 20 asymmetric hybrid low concentrator PVT (C-PVT) solar collector prototypes. The system is installed in a South wall facade in order to maximise the available space (with a tilt of 20 degrees and an orientation of 5 degrees W). The thermal system is connected to the district heating network, thus heating the University buildings. On the other hand, the electrical system is grid-connected, where it feeds the grid directly. Real measurement data has been collected and compared with a thermal (through ScenoCalc tool) and electrical performance models. The annual thermal and electrical yield achieved 86% and 89% of the simulated thermal and electrical yield, respectively.

  • 17.
    Cabral, Diogo
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Gomes, João
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Karlsson, Björn O.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Performance Evaluation of Non-Uniform Illumination on a Transverse Bifacial PVT Receiver in Combination with a CPC Geometry2019In: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 194, p. 696-708Article in journal (Refereed)
    Abstract [en]

    PVT collectors co-generate electricity and heat from the same gross area, thus achieving higher combined heat and electric yields. A comprehensive evaluation has been carried out on non-uniform solar irradiation profile distributions on four symmetric low concentration CPC PVT (LCPVT) solar collector design concepts. Additionally, an electrical and thermal performance evaluation of symmetric truncated LCPVT solar collectors based on a CPC reflector geometry with a central transverse bifacial PVT receiver has been carried out, through a numerical ray-tracing model software and a multi-paradigm numerical computing environment software. A simplified thermal (quasi-dynamic testing method for liquid heating collectors described in the international standard for solar thermal collectors ISO 9806:2017) and electrical performance models were employed to evaluate the LCPVT design concepts. The evaluation was carried out for heating Domestic Hot Water (DHW) for a Single Family House (SFH) in Fayoum (Egypt), where energy yields between 351 and 391 kWh/m2/year have been achieved. The non-uniform solar irradiation assessment showed that the PV cells are exposed to high levels of radiation due to the specific reflector geometry. Furthermore, the study showed that the CPC geometries are very sensitive to the shading effect, as partial shadowing is substantial for high incidence angles.

  • 18.
    Carlander, Jakob
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Trygg, Kristina
    Technology and Social Change, Linköping University, Linköping, Sweden.
    Moshfegh, Bahram
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology. Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Integration of measurements and time diaries as complementary measures to improve resolution of BES2019In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, no 11, article id 2072Article in journal (Refereed)
    Abstract [en]

    Building energy simulation (BES) models rely on a variety of different input data, and the more accurate the input data are, the more accurate the model will be in predicting energy use. The objective of this paper is to show a method for obtaining higher accuracy in building energy simulations of existing buildings by combining time diaries with data from logged measurements, and also to show that more variety is needed in template values of user input data in different kinds of buildings. The case studied in this article is a retirement home in Linköping, Sweden. Results from time diaries and interviews were combined with logged measurements of electricity, temperature, and CO2 levels to create detailed occupant behavior schedules for use in BES models. Two BES models were compared, one with highly detailed schedules of occupancy, electricity use, and airing, and one using standardized input data of occupant behavior. The largest differences between the models could be seen in energy losses due to airing and in household electricity use, where the one with standardized user input data had a higher amount of electricity use and less losses due to airing of 39% and 99%, respectively. Time diaries and interviews, together with logged measurements, can be great tools to detect behavior that affects energy use in buildings. They can also be used to create detailed schedules and behavioral models, and to help develop standardized user input data for more types of buildings. This will help improve the accuracy of BES models so the energy efficiency gap can be reduced. 

  • 19.
    Casanaba, Pablo
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Development of a Simple and Cheap Equipment for monitoring the solar Irradiance on PV modules.2019Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Increased use of renewable energies that is taking place all over the world is having a very important impact on the photovoltaic solar energy industry. This means of obtaining electrical energy is one of the most promising ones nowadays, thanks to the fact that it is a technology of easy installation and maintenance. However, the number of hours that a photovoltaic system works at maximum power depends almost entirely on environmental conditions, mainly in terms of solar irradiance.Solar irradiance is a magnitude that measures the power released by sunlight per unit area; the higher it is, the more power the photovoltaic system will generate.Therefore, it is very important to measure this magnitude in order to obtain data that either can give information about which is the best place to install a photovoltaic system or expect the device performance.Unfortunately, sensors used nowadays to measure this magnitude are quite expensive. The most widely used are the so-called pyranometers, with an average cost of between 8000 SEK to 10000 SEK, and solar reference cells, which can be quite cheaper (1000 SEK), but also can be the most expensive devices on the market depending on the features they have (some reference cells cost 20000 SEK).In this thesis, a solar irradiance sensor based on the treatment of a current generated by a silicon photodiode has been designed, built and calibrated. The signal generated by the device is a voltage that has been obtained by means of a current-to-voltage converter amplifier stage. Once the construction of the circuit was completed, it was tested on the roof of Hall 45 located in the University of Gävle. The testing was carried out on 13, 14 and 15 May 2019, and it consisted in the comparison of the signal generated by the new device and the signals generated by a pyranometer and a solar cell.The result is a device priced at 200 SEK, which shows acceptable levels of accuracy during central daylight hours but shows a strong angular dependence on incident light during sunrise and sunset.

  • 20.
    Cehlin, Mathias
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Mapping tracer gas concentrations using a modified Low Third Derivative method: numerical study2019In: The International Journal of Ventilation, ISSN 1473-3315, E-ISSN 2044-4044, Vol. 18, no 2, p. 136-151Article in journal (Refereed)
    Abstract [en]

    In indoor applications, computed tomography is the process of transforming a network of intersecting attenuation measurements into a spatially resolved two-dimensional concentration map. In this study the Low Third Derivative method (LTD) was numerically evaluated and optimized for different conditions. A modified version of the LTD algorithm (LTDm) was proposed and evaluated against the original version. Eight test maps were reconstructed under different conditions, such as weight ratio, pixel resolution, beam density and measurement noise. Performance of both LTD algorithms was found to be intimately related to the number of peaks and complexity in the test map and the steepness of the peaks. The LTDm algorithm improved the quality, especially for concentration maps including steep gradients and regions with very low concentrations. The LTDm method heavily lessened aliasing distortions and efficiently minimized the effects of noise.

  • 21.
    Cehlin, Mathias
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Karimipanah, Taghi
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Larsson, Ulf
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Ameen, Arman
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Comparing thermal comfort and air quality performance of two active chilled beam systems in an open-plan office2019In: Journal of Building Engineering, E-ISSN 2352-7102, Vol. 22, p. 56-65Article in journal (Refereed)
    Abstract [en]

    The traditional air distribution and supply devices in ventilated rooms are not always able to effectively remove excess heat from the space. Therefore, chilled beams, especially the active systems, are used to achieve the desired cooling demand. The focus of this paper was the potential benefit of a newly designed active chilled beam (ACB) system, to improve heat removal effectiveness local thermal condition and indoor air quality in the occupants’ breathing zone. The system based on 1-way flow design (1W-ACB) was installed in an open-plan office and its performance was studied by analysing the temperatures, velocities and tracer gas concentrations in predetermined risky zones. The system was compared against a traditional 4-way flow design (4W-ACB).

    The obtained results showed that heat removal effectiveness was slightly higher for the 1W-ACB system compared to the 4W-ACB system. The local thermal condition was very good close to the workstations when using 1W-ACB. The benefits of the new system were also shown in the occupied zone by analysing the mean age of air and air-change effectiveness (ACE) in the breathing level at the workstation locations. The 1W-ACB system provided air with lower mean age (fresher air), and therefore higher ACE, near the breathing zone at the workstations compared to the 4W-ACB. On the other hand, the 4W-ACB system had the advantage of providing high thermal and mean age of air uniformity throughout the room.

  • 22.
    Chacin, Luís
    et al.
    Loughborough University, UK.
    Rangel, Simon
    FEUP, Porto, (Portugal.
    Cabral, Diogo
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Gomes, João
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Impact study of operating temperatures and cell layout under different concentration factors in a CPC-PV solar collector in combination with a vertical glass receiver composed by bifacial cells2019In: Impact study of operating temperatures and cell layout under different concentration factors in a CPC-PV solar collector in combination with a vertical glass receiver composed by bifacial cells / [ed] SWC-SHC, 2019Conference paper (Refereed)
    Abstract [en]

    Solar Collectors with Compound Parabolic Concentrator (CPC) reflectors redirect solar irradiance into the receiver (placed in optimal position). The concept of such devices is to reduce the installation area and energy costs [1]. This research focuses on the behaviour and efficiency of a stationary CPC-PV solar collector. Each trough of this collector has different concentration factors (1.25 and 1.66) with vertically placed bi-facial cell receivers. An analysis of the electrical efficiency is performed in order to evaluate the viability of a CPC geometry with a vertical bifacial PV receiver. Furthermore, an investigation on bifacial cells performance due to concentration (and consequently increased cell temperature) is carried out. A numerical simulation of the yearly available radiation and the Incident Angle Modifiers (IAM) for each geometry is also conducted. Finally, a comparison between the simulations and the outdoor testing on the prototype collector is detailed. The tests took place in Gävle, Sweden (61º Latitude). The results showed that higher concentration factors led to larger operating temperatures (114ºC for a concentration factor of 1.66 and 96ºC for a concentration factor of 1.25). Although this may compromise the cell performance and shorten the device’s life cycle, it is shown that appropriate ventilation will allow manageable operating temperatures.

  • 23.
    Choonya, Gasper
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Experimental investigation of ventilation performance of corner placed stratum ventilation in an office environment2019Independent thesis Advanced level (degree of Master (Two Years)), 80 credits / 120 HE creditsStudent thesis
    Abstract [en]

    Energy use in buildings account for about one third of the total global energy supply and contributes as much as 30% of the anthropogenic greenhouse gas emissions. It is estimated that energy use in buildings will increase to 67% by 2030. The need for better thermal comfort and air quality in indoor environments is the leading cause for high energy use in buildings.  Heating, ventilation and air conditioning systems take up about 50% of the total energy use in buildings which is about 10-20% of the national energy use in most developed countries. The development and adoption of sustainable ventilation systems is a viable solution to mitigate climate change and curtail carbon emissions.

    The experimental study was conducted in a room resembling a modern office in a laboratory environment. The study involved investigating the ability of the system to provide cooling and heating. Concentration decay tracer gas technique using Sulphur hexafluoride (SF6) gas was used to determine the local air change index and air change efficiency in the room. Low-velocity omni-directional thermistor anemometer type CTA88 were used to measure the air velocity and temperature in the room. Smoke was used to visualise the flow patterns created in the room.  The climate chamber was used to mimic climatic conditions in winter. Fifteen cases were investigated with five air flow rates set points (30, 40, 50, 60 and 70 l/s) at three supply air temperatures, i.e., 17.6 °C, 21.0 °C and 25.3 °C.

    The results of the local air change index and air change efficiency for the nominal supply temperature of 17.6 °C showed that the system had strong characteristics of a mixing ventilation system. At the supply air temperature of 21.0 °C, the performance of the system deteriorated slightly to below that of a mixing ventilation system and could not satisfactorily provide heating at supply temperature of 25.3 °C. Better performance of the system at all supply air temperature setpoints was observed at lower airflow rates. At all supply air temperature setpoints, relatively higher degree of temperature stratification was observed at lower supply. The draught rate levels decreased with increase in supply air temperature and height. The location of the air inlet terminals in relation to the workstations had significant effect on the performance of the system. The stratum ventilation system did not work efficiently because the air streams were heavily mixed before reaching the occupants.

  • 24.
    Costeira, João
    et al.
    University of Minho, Portugal.
    Vieira, Manuel
    University of Minho, Portugal.
    Hayati, Abolfazl
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Gomes, João
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Cabral, Diogo
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Development of a compact and didactic solar energy kit using Arduino2018In: PROCEEDINGS OF THE ISES EUROSUN 2018 CONFERENCE - 12TH INTERNATIONAL CONFERENCE ON SOLAR ENERGY FOR BUILDINGS AND INDUSTRY / [ed] Haberle, A., INTL SOLAR ENERGY SOC , 2018, p. 1663-1667Conference paper (Refereed)
    Abstract [en]

    When the sun rises, so does the key element that will shape the future of the world energy landscape. It is not an understatement to say that the solar energy industry is beginning to lead the path towards a sustainable future for all of us. However, the awareness of the potential of this amazing source of energy must begin from the most basic levels of education all the way to university. The scope of this paper is to display a new compact and didactic solar energy kit with the potential to replace current high cost and complex solar energy kits. These solutions are often too expensive and therefore unavailable for most of Europe’s public schools. As such, an equipment was developed using an open-source platform called Arduino that will enable students to conduct practical experiments in a fast, effective and simple manner and thus allow students to acquire the proper expertise in areas like energy, electronics, and programming.

  • 25.
    Ehn, Jenny
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Energikartläggning med fokus på ventilation: En fallstudie som undersöker underhåll och dess inverkan på fastigheter2019Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    För att kunna reducera de effekter som klimatförändringarna orsakar behöver energisystemen effektiviseras. Eftersom fastighetsbeståndet idag mestadels består av äldre byggnader, blir renoveringar och effektiviseringar viktiga för att kunna få ner energianvändningen. För att renovering och effektivisering ska gynna både klimatet och fastighetsägaren bör det planeras långsiktigt redan från start samt inkludera ett livscykeltänk. Syftet med detta arbete är att utföra en energikartläggning av en kontorsbyggnad från 1988 som är belägen i Gävle samt presentera eventuella energibesparingsåtgärder. Huvudfokus har varit på frågan om hur olika typer av underhåll och underhållsskulder påverkar en fastighet, med störst inriktning på den tekniska utrustningen. Metoder som använts i arbetet har varierat från praktiska mätningar till en litteraturstudie och intervjuer. För att få en inblick om förvaltningsbolag vet vad en underhållsskuld är skickades en enkät ut med några frågor kring ämnet. Energikartläggningen visade att kontorsbyggnaden är i bra skick och de åtgärder som presenteras berör ventilation och värmesystemet. Ett byte av ventilationsaggregatet föreslås som reducerar värmeanvändningen med 15 % och elanvändningen med 28% samt minskar utsläppen med 2,7 ton CO2 per år. Återbetalningstiden är lång, men en LCC-kalkyl beräknad på 20 år redovisar att bytet är lönsamt långsiktigt. Behålls det gamla aggregatet kan tilluftstemperaturen sänkas och innetemperaturen justeras ned med någon grad. Detta bidrar till att reducera värmeanvändningen med 13 %. Resultatet som framkom i litteraturstudien samt intervjuer visar att eftersatt underhåll leder till att fastighetens värde minskar och att pålitligheten för systemen reduceras, vilket ökar risken för dåligt inneklimat. Det förebyggande underhållet syftar till att utrustningen ska hålla optimal prestanda medans felavhjälpande underhåll sker när komponenten tappat sin funktion. Förebyggande underhåll visar sig mer kostnadseffektivt jämfört med felavhjälpande underhåll. Arbetsbelastningen och underhållskostnaden kommer öka i takt med underhållsskulden samtidigt som en försämring av fastighetens livslängd sker. Sammanställningen av enkäten visade att förvaltningsbolagen har koll på vad en underhållsskuld är och att de svarande bolagen jobbar med ett livcykeltänk.

    Nyckelord: Energikartläggning, Energieffektivisering, Underhåll

  • 26.
    Elofsson, Fredrik
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Optimering av last och produktion i Gävles fjärrvärmenät: Reducering av effekttoppar via värmelagring i byggnader2019Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    District heating is today the most common way of providing a building with heat and hot water in Sweden. It is an environmentally friendly product mostly used with renewable fuel. However, at power peaks most companies use production units that are more expensive and worse for the environment and should therefore be avoided as much as possible. This can be done with a method called load management. When a power peak occurs, the heat supply to buildings connected to the district heating system can be temporarily reduced. The heat energy can later be returned when the heat demand is lower. Thanks to the heat inertia of the buildings, the indoor temperature will not fall within the time frame for the load management. Historical data has been analysed to identify when and why power peaks occur in the district heating network. Power peaks throughout the district heating network have proved difficult to identify. However, for individual consumers clear patterns of power peaks have emerged. These power peaks mainly occur because of large use of hot water but also because of the shifting outdoor temperature. In order to see how the production cost would differ from the actual outcome load management was applied for Gävle's district heating 2018. The load management was calculated manually by identifying the most expensive production unit on an hourly basis. If a cheaper production unit had the potential to deliver higher power the next hour, the production was moved to the cheaper production unit. The process was repeated for each hour during 2018. After carrying out load management for Gävle's district heating network, 1 457 MWh had been shifted to a cheaper production unit. This resulted in a financial saving of 1,0 % of the total production cost. The environmental savings showed a reduction from 6.1 to 5.9 g CO2eq /kWh a total of 197 tonne CO2eq. In the exact same way, a load management was performed for a scenario where Gävle and Sandviken's district heating network were connected. The gain for a load management with Sandviken will be considerably larger, a reduced production cost of 3.6 % is possible. The environmental savings showed a reduction from 8.4 to 7.8 CO2eq /kWh a total of 575 tonne CO2eq. For future efficient load management, buildings should be divided into different classes depending on the building's time constant. User patterns for the entire district heating network have proved difficult to detect. Artificial intelligence can be an option for short-term forecasting of the power output

  • 27.
    Frojdén, Jonathan
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Betydelsen av brännbart och obrännbart material i ett brandförlopp: En jämförande studie2019Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    I och med de ändringar som trädde i kraft 1993/94 då funktionskrav för konstruktioner infördes istället för de enskilda materialens egenskaper lade grunden till att det numer är möjligt att bygga byggnader som kräver en hög grad av brandskydd i trä och andra material baserade på brännbart material. Denna ändring innebar bland annat att nya och innovativa produkter hade chans att etablera sig på den svenska marknaden, såsom isolering tillverkad av returpapper och träfiber. I och med träets naturliga förmåga att till viss grad motstå brand, bland annat genom att bilda ett skyddande kolskikt, i kombination med tillsats av flamskyddsmedel som försvårar antändning ytterligare resulterar i att dessa material numer har möjlighet att konkurrera mot obrännbara material gällande brandsäkerhet i byggnader.

    De testmetoder som idag avgör en produkts brandklass sker under kontrollerade former med temperaturer som inte motsvarar en fullt utvecklad brand. Detta medför att det utifrån ett materials brandklass, eller s.k. euroklass, inte går att förutse materialets brandmotstånd under en fullt utvecklad brand. Inte heller under ett så kallat Room Corner Test, som ska motsvara brandens tidiga skede, har det visat sig att euroklassen inte alltid motsvarar de krav som ställs för att förhindra vidare förbränning och övertändning. Däremot går det att utifrån euroklass se mönster i dess klassificering och förmåga att sprida glödbrand.

  • 28.
    Gomes, João
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Assessment of the impact of stagnation temperatures in receiver prototypes of C-PVT collectors2019In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, no 15, p. 2967-2967Article in journal (Refereed)
    Abstract [en]

    Concentrating Photovoltaic Thermal (C-PVT) solar collectors produce both thermal and electric power from the same area while concentrating sunlight. This paper studies a C-PVT design where strings of series-connected solar cells are encapsulated with silicone in an aluminium receiver, inside of which the heat transfer fluid flows, and presents an evaluation on structural integrity and performance, after reaching stagnation temperatures. Eight test receivers were made, in which the following properties were varied: Size of the PV cells, type of silicone used to encapsulate the cells, existence of a strain relief between the cells, size of the gap between cells, and type of cell soldering (line or point). The test receivers were placed eight times in an oven for one hour at eight different monitored temperatures. The temperature of the last round was set at 220 °C, which exceeds the highest temperature the panel design reaches. Before and after each round in the oven, the following tests were conducted to the receivers: Electroluminescence (EL) test, IV-curve tracing, diode function, and visual inspection. The test results showed that the receivers made with the transparent silicone and strain relief between cells experienced less microcracks and lower power degradation. No prototype test receiver lost more than 30% of its initial power, despite some receivers displaying a large number of cell cracks. The transparent and more elastic silicone is better at protecting the solar cells from the mechanical stress of thermal expansion than the compared silicone alternative, which was stiffer. As expected, larger cells are more prone to develop microcracks after exposure to thermal stress. Additionally, existing microcracks tend to grow in size relatively fast under thermal stress. EL imaging taken during our experiment leads us to conclude that it is far more likely for existing cracks to expand than for new cracks to appear. [ABSTRACT FROM AUTHOR]

  • 29.
    Gutierrez Saenz, Juan
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Energy analysis and cost estimation of a potential On-shore Power Supply system in the Port of Gävle2019Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The Port of Gävle is one of the most important harbours in Sweden as far as size and freight capacity is concerned. Marine traffic is increasing greatly, thus environmental pollution as well as noise and vibrations are of major concern in port cities. Shore to ship power supply systems might be a feasible solution to curtail emissions because the Auxiliary Engines are instead shut down while the ship stays alongside the quay. The literature review shows they are reliable and very appealing in all respects, thereby contributing to sustainable development. Taking into account the kind of vessels that call at the Port of Gävle, a High Voltage Shore Connection is recommendable, in compliance with the International Standards. An own technical survey is developed to gather all the information, as well as personal interviews to collect first-hand data. Technical issues such as the synchronisation procedure and the ground system with regard to safety are briefly discussed. Due to the lack of data, calculations consist of average values: peak and average demand, and fuel consumption during a typical call. Considering updated energy prices for both electricity and fuel, results show that an on‑shore power supply system make energy costs decrease by 71% at berth in comparison with burning marine fuel, which is saved by around 4 tonnes per call. Additionally, up to 5126 tonnes of CO2 are avoided per year, among other pollutants. Shore‑side power has proven to be profitable and appealing to the Port of Gävle; however, vessels need to be retrofitted, which implies relatively high investments. Collaboration agreements and shipping companies’ willingness to undergo changes are key issues that still need to be solved.

  • 30.
    Hansen, Victor
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Jämförelse av värmeförluster i andra och tredje generationens fjärvvärme: Genom simuleringar2019Independent thesis Basic level (university diploma), 180 HE creditsStudent thesis
    Abstract [en]

    District heating is the most common type of heating in Sweden. More than 50% of all premises and homes use district heating as a heat source. The concept of District heating is to centralize heat production and produce heat on a large scale at one or more heating plants. The heat from the heating plants is distributed to premises and houses with heat demand via district heating pipes that are buried in the ground. At each customer who is connected to the district heating network, there is a district heating center with a heat exchanger. In the heat exchanger, the district heating water exchange heat to the property's internal heating system. The cooled district heating water is pumped back into a return line to the heating plant to be reheated.

     

    The district heating distribution system has developed over the years. In Sweden, the sytems in use is second-generation district heating and third-generation district heating, which is the method used today. In order to reduce emissions from production facilities and achieve national and global environmental goals, the energy companies work to achieve more efficient energy use. One way of making energy use more efficient is to minimize the heat losses in the district heating distribution system. This thesis aims to investigate differences in heat losses of second-generation district heating systems and third-generation district heating systems. The work investigates whether it is economically feasible to replace the older lines with regard to heat losses.

     

    Simulations of the various systems calculates the energy losses in the supply system in watts per meter. Repayment time and environmental impact are calculated using input data from the energy companies. The energy companies have assisted with input through a structured interview.

     

    The result shows that the heat losses cannot justify the exchange of the pipes on their own. Along with other factors such as water leakage and repair costs, heat losses can be an important factor to consider in a reinvestment calculation. Considering district heat production mainly using renewable fuels, it is not possible to see any positive environmental effects either by replacing the pipes.

  • 31.
    Hansson, Kajsa
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Jämförelse av VAV- och CAV-ventilationssystem för nybyggd skola och dess känslighet för ökad personbelastning: En simuleringsstudie med IDA ICE2019Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    To reduce the energy use is as much a global goal as it is an international goal. The Swedish goal is to increase the efficiency of energy use with 20 % by year 2020. This means that almost all the sectors are affected, that includes the housing and service sector which accounts for almost 40 % of Sweden’s energy use. The ventilation system is one thing that can contribute to saving energy. In this study a new built primary school has been simulated, regarding energy use and thermal comfort, where different ventilation system has been tested to determine which system are the most profitable in economically, energy and comfortably. The ventilation system different in the flow control. Two main types of flow control have been tested: Variable Air Volume (VAV) and Constant Air Volume (CAV). The building, which is well insulated and has a heavy body has also been simulated with increased personal load to see how it affects the ventilation system. The method used to perform the work is a comparative type simulation study. The computer program IDA ICE 4.8 has been used to build the model and do the simulations. The model that has been simulated resemble the primary school Stigslundsskolan in Gävle in both construction, ventilation and degree of use. Data has been collected from the consulting company Ramboll’s database with information on the planning of the school. Personal communication has also been used to collect information. The simulations have been performed for a school year and a schedule for the personal load has been set for each hall to imitate the schedule that the students are following today. The result of the simulations showed that the VAV ventilation system, which resemble the planned case, cover the ventilation requirements, uses less energy than the CAV system and create a very good thermal climate in the building. The result also shows that the increased personal load had a great influence on the VAV ventilation system and increased the repayment period from 11 to 30 years.

  • 32.
    Hasan, A. S. M. M.
    et al.
    Department of Electrical and Electronic Engineering, Bangladesh Army International University of Science and Technology, Cumilla, Bangladesh.
    Hossain, R.
    Department of Electrical and Electronic Engineering, Bangladesh Army International University of Science and Technology, Cumilla, Bangladesh.
    Tuhin, R. A.
    Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh.
    Sakib, T. H.
    Department of Electrical and Electronic Engineering, Bangladesh Army International University of Science and Technology, Cumilla, Bangladesh.
    Thollander, Patrik
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology. Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Empirical investigation of barriers and driving forces for efficient energy management practices in non-energy-intensive manufacturing industries of Bangladesh2019In: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050, Vol. 11, no 9, article id 2671Article in journal (Refereed)
    Abstract [en]

    Improved energy efficiency is being considered as one of the significant challenges to mitigating climate change all over the world. While developed countries have already adopted energy management and auditing practices to improve energy efficiency, the developing countries lag far behind. There are a limited number of studies which have been conducted in the context of developing countries, which mostly revolve around highly energy-intensive sectors. This study looks into the existence and importance of the challenges to and motivating forces for the adoption of energy management practices in Bangladesh, a developing country, focusing on the non-energy-intensive manufacturing industries. Conducted as a multiple case study, the results indicate the existence of several barriers towards adopting and implementing the management of energy practices in the non-energy-intensive industries of Bangladesh, where among them, "other preferences for capital venture" and "inadequate capital expenditure" are the most dominant. This study also identified a number of driving forces that can accelerate the acceptance of energy efficiency practices, such as the demands from the owner, loans, subsidies, and a lowered cost-benefit ratio. Findings of this study could assist the concerned stakeholders to develop beneficial policies and a proper regulatory framework for the non-energy-intensive industries of developing countries like Bangladesh. © 2019 by the authors.

  • 33.
    Hayati, Abolfazl
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Akander, Jan
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Mattsson, Magnus
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Simulation of Ventilation Rates and Heat Losses during Airing in Large Single Zone Buildings in Cold Climates2019In: Cold Climate HVAC 2018: Sustainable Buildings in Cold Climates / [ed] Johansson, D., Bagge, H., Wahlström, Å., Springer, 2019Conference paper (Refereed)
    Abstract [en]

    Airing can be a solution to introduce extra ventilation in large single zone buildings, especially where there are large aggregations of people such as churches or atriums. In naturally ventilated domestic and ancient buildings, opening of a window or door can introduce extra fresh air and remove particles and other contaminants emitted from people and other sources such as lit candles in churches. However, the energy use might be an issue in cold climates, where airing might lead to waste of heated air, at the same time as indoor air temperatures can be uncomfortably low. In the present study, the energy loss and ventilation rate due to airing in a large single zone (church) building is investigated via IDA-ICE simulation on annual basis in cold weather conditions. The results can be used in order to prepare airing guidelines for large single zone buildings such as atriums, churches, industry halls and large sport halls. According to the results, one-hour of airing in the studied church building resulted in 40-50 % of exchanged room air and, if practiced once a week, an increase of around 1 % in heating energy.

  • 34.
    Hayati, Abolfazl
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Mattsson, Magnus
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    A wind tunnel study of wind-driven airing through open doors2019In: The International Journal of Ventilation, ISSN 1473-3315, E-ISSN 2044-4044, Vol. 18, no 2, p. 113-135Article in journal (Refereed)
    Abstract [en]

    Temporarily enhanced natural ventilation of indoor environments can be achieved by opening windows and/or doors, i.e. airing. In this study, wind driven airing rate through doors was measured by tracer gas at a building model in a wind tunnel. Both single opening and cross flow airing was investigated, with doors placed in centrally on the long side of an elongated building model. It was found that cross flow airing yielded 4–20 times higher airing rate than single opening airing; lowest value occurring with opening surfaces perpendicular to wind direction. At single opening airing, windward positioned door yielded about 53% higher airing rate than leeward positioned. Inclusion of a draught lobby (extended entrance space) lowered airing rate by 27%, while higher wind turbulence increased it by 38%. Advection through turbulence appeared a more important airing mechanism than pumping. At cross flow, however, turbulence and draught lobby had practically no effect.

  • 35.
    Holmgren, Mattias
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Environmental Science.
    Kabanshi, Alan
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Langeborg, Linda
    University of Gävle, Faculty of Health and Occupational Studies, Department of Occupational Health Science and Psychology, Psychology.
    Barthel, Stephan
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Environmental Science.
    Colding, Johan
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Environmental Science. Beijer Institute of Ecological Economics, The Royal Swedish Academy of Sciences, Stockholm, Sweden.
    Eriksson, Ola
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Environmental Science.
    Sörqvist, Patrik
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Environmental Science.
    Deceptive sustainability: Cognitive bias in people's judgment of the benefits of CO2 emission cuts2019In: Journal of Environmental Psychology, ISSN 0272-4944, E-ISSN 1522-9610, Vol. 64, p. 48-55Article in journal (Refereed)
    Abstract [en]

    People's beliefs in the actions necessary to reduce anthropogenic carbon dioxide (CO2) emissions are important to public policy acceptability. The current paper addressed beliefs concerning how periods of small emission cuts contribute to the total CO2 concentration in the atmosphere, by asking participants to rate the atmospheric CO2 concentration for various time periods and emission rates. The participants thought that a time period with higher emission rates combined with a period of lower emission rates generates less atmospheric CO2 in total, compared to the period with high emission rates alone – demonstrating a negative footprint illusion (Study 1). The participants appeared to base their CO2 estimates on the average, rather than on the accumulated sum, of the two periods' emissions – i.e. an averaging bias (Study 2). Moreover, the effect was robust to the wordings of the problem presented to the participants (Study 3). Together, these studies suggest that the averaging bias makes people exaggerate the benefits of small emission cuts. The averaging bias could make people willing to accept policies that reduce emission rates although insufficiently to alleviate global warming.

  • 36.
    Hwit, Emil
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Rekommenderad framledningstemperatur i fjärrvärmenät baserat på rökgaskondensering: En beräkningsundersökning av rökgaskondensering och fjärrvärme i en medelstor svensk stad2019Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The most common way of heating buildings in Sweden is by district heating, more than half of all the locales and homes is heated this way. Flue gas condensation is the third largest contributor of energy in district heating at 11 %. The importance of its efficiency is thereby big.

    Flue gas condensation can be installed at combustion boilers to increase the efficiency, it can be used in combination with most fuels that exhaust steam. The flue gas condensation has an important role by harnessing the energy in flue gases and cleansing it from environmental hazards.

    The flue gas condensation unit on Stora Enso Kvarnsveden Mill is owned by Borlänge‑Energi. They want to know if the condenser is operating as effective as it could be. This report investigates how the condenser and external heater at Stora Enso Kvarnsveden Mill is affected by different supply and return temperatures as well as what the production costs of the energy is.

    The calculations have been accomplished by using the density, specific heat capacity, flow- and temperature differences in Excel. All the calculations have originated from the median value for each month and used in comparison. The basis of the calculations is data that has been collected in the period of January 2015 to December 2018.

    The results indicate that increasing the supply temperature to 95 °C increases the energy costs by about 2 500 000 SEK per year. These costs can be reduced by 400 000 SEK per year by decreasing the return temperature to 40 °C. If the supply temperature is instead decreased to 75 °C when the temperature outside is higher than -1 °C, the costs decreases. A low supply temperature leads to less wear on the pipes, less heat losses, less fuel consumption and less emissions. This temperature reduction can decrease the costs by 620 000 SEK per year.

    If the return temperature is reduced but the supply temperature retained as it is today the costs could decrease by over 400 000 SEK per year. And by reducing both the supply and return temperature a cost saving of over 1 000 000 SEK per year could be achieved.

    The recommendation is therefore a lowering of the supply temperature to 75 °C when the temperature outside is warmer than -1 °C.

    The recommended supply temperature is:

    • 75 °C when the temperature outside is warmer than -1 °C
    • 80 °C between -2 and -4 °C
    • 85 °C at -5 °C,
    • 90 °C between -6 and ‑7 °C
    • 95 °C between -8 and -11 °C
  • 37.
    Jahedi, Mohammad
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Moshfegh, Bahram
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology. Department of Management and Engineering, Linköping University.
    Quenching a rotary hollow cylinder by multiple configurations of water-impinging jets2019In: International Journal of Heat and Mass Transfer, ISSN 0017-9310, E-ISSN 1879-2189, Vol. 137, p. 124-137Article in journal (Refereed)
    Abstract [en]

    Experiments have been conducted to analyze quenching of a hot rotary hollow cylinder by one and two rows of water-impinging jets. Sub-cooled water jets (ΔTsub = 45–85 K) with flow rate 8006 to 36,738 impinged on hollow cylinder with rotation speed 10 to 70 rpm at various initial wall superheat temperatures from 250 to 600ºC. Jet-to-jet and jet-to-surface spacing varied between 4 to 10d and 1.5 to 7d respectively and angular position of impinging jets were tested from 0 to 135º. Effectiveness of the defined parameters on stagnation point’s local average heat flux was found lower in the film and nucleate boiling compare to transition boiling regime where rotation speed had the highest impact. Characteristic of maximum heat flux (MHF) at stagnation point and upwash flow point were analyzed based on surface heat flux, time and temperature corresponding to MHF. Same maximum heat flux levels were captured in the both points which reveals importance of the flow behavior at the upwash flow point. The effectiveness of the parameters to improve average heat transfer was studied based on cooling area of each water impingingjet in the multiple configurations. Higher average heat transfer was obtained by increasing flow rate and subcooling temperature and lower initial wall superheat temperature corresponding to onset of transition boiling regime.

  • 38.
    Johansson, Ida
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Mardan, Nawzad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Cornelis, Erwin
    Tractebel Engineering S.A., Brussels, Belgium.
    Kimura, Osamu
    Socio-Economic Research Center, Central Research Institute of Electric Power Industry, Tokyo, Japan.
    Thollander, Patrik
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Designing Policies and Programmes for Improved Energy Efficiency in Industrial SMEs2019In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, no 7, article id 1338Article, review/survey (Refereed)
    Abstract [en]

    Climate change, due to anthropogenic emissions of greenhouse gases, is driving policymakers to make decisions to promote more efficient energy use. Improved industrial energy efficiency is said to play a key role in the transition to more carbon-neutral energy systems. In most countries, industrial small and medium-sized enterprises (SMEs) represent 95% or more of the total number of companies. Thus, SMEs, apart from using energy, are a major driver in the economy with regard to innovation, GDP growth, employment, investments, exports, etc. Despite this, research and policy activities related to SMEs have been scarce, calling for contributions in the field. Therefore, the aim of this paper is to critically assess how adequate energy efficiency policy programmes for industrial SMEs could be designed. Results show that scientific publications in the field differ in scope and origin, but a major emphasis of the scientific papers has been on barriers to and drivers for energy efficiency. Scientific contributions from studies of energy policy programmes primarily cover energy audit programmes and show that the major energy efficiency measures from industrial SMEs are found in support processes. The review further reveals an imbalance in geographic scope of the papers within the field, where a vast majority of the papers emanate from Europe, calling for scientific publications from other parts of the world. The study synthesizes the findings into a general method on how to design efficiency programs for the sector.

  • 39.
    Johansson, Ida
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Thollander, Patrik
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Non-energy benefits in energy audit and energy efficiency network policy programs for industrial SMEs2019In: Eceee 2019 Summer Study Proceedings, 2019, p. 225-233Conference paper (Refereed)
    Abstract [en]

    Improved energy efficiency is a key component towards sustainable and climate-neutral industrial energy systems. The potential for industrial energy efficiency varies between sectors and processes but is stated to be high. Implementation of energy efficiency measures and activities could also result in benefits in addition to energy cost savings, benefits that are more difficult to quantify in economic terms. Research shows that additional gains from investments are underestimated as non-energy benefits (NEBs) are often neglected when the financial attractiveness of energy efficiency investments are evaluated. In the literature, great attention has been given to realise industrial energy efficiency potential through industrial energy policies and programs, in order to promote investments and implementation of new, more efficient technologies and processes. The most internationally common industrial energy policies for industrial SMEs are energy audit programs, but energy efficiency networks have also received increased attention from policymakers. However, there is a scarcity of studies exploring NEBs in relation to industrial SME energy audits and energy efficiency network policy programs. The aim of this study was to identify and compare NEBs from two key energy efficiency policies: energy audit and energy efficiency network programs. Semi-structured interviews were conducted with executives at two groups of industrial companies: companies that participated in the regional Swedish energy efficiency network policy program, and participants from the national energy audit program, Swedish Energy Audit Program (SEAP). The overall most commonly mentioned NEBs were related to production, such as increased lifetime of equipment and more reliable production. However, while participants from the energy audit program related these NEBs mainly to technical installations, network participants also saw these types of NEBs from energy management practices. If NEBs were to be included in energy audit programs the benefit of the audits could be increased, but will then particularly affect the technical installations. NEBs in terms of network participation were shown to lead to an increase in the general benefits of the networks, and for network companies NEBs are also linked to measures related to operation and maintenance, i.e., energy management practices. One difference between the two groups was that NEB improved the company’s environmental image. Two of the companies participating in the network policy program had presented their participation on their public webpage perceiving this as a very important benefit, while respondents from the energy audit program could not relate their company image to their energy audit. One additional NEB that was found, not previously mentioned in the scientific literature on NEBs, was that among the network participants, establishing contacts with other companies in the region was considered of great importance, and further contacts that would not have been established outside of the network. Results even found new customer relationships as a result of the network. This finding is of a general nature, thus apart from the other commonly known NEBs, an additional NEB that primarily relates to participation in energy efficiency networks that this study found is establishing new relationships with other companies in the region.

  • 40.
    Kabanshi, Alan
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Entrainment and its Implications on Microclimate Ventilation Systems: Scaling the Velocity and Temperature Field of a Round Free Jet2019In: Indoor Air, ISSN 0905-6947, E-ISSN 1600-0668, Vol. 29, no 2, p. 331-346Article in journal (Refereed)
    Abstract [en]

    Research on microclimate ventilation systems, which mostly involve free jets, point to delivery of better ventilation in breathing zones. While the literature is comprehensive, the influence of contaminant entrainment in jet flows and its implications on the delivery of supplied air is not fully addressed. This paper present and discuss entrainment characteristics of a jet issued from a round nozzle (0.05 m diameter), in relation to ventilation, by exploring the velocity and temperature fields of the jet flow. The results show a trend suggesting that increasing the Reynolds number (Re) reduces ambient entrainment. As shown herein, about 30% concentration of ambient air entrained into the bulk jet flow at Re 2541 while Re 9233 had about 13% and 19% for Re = 6537/12026 at downstream distance of 8 diameters (40 cm). The study discusses that “moderate to high” Re may be ideal to reduce contaminant entrainment, but this is limited by delivery distance and possibly the risk of occupant discomfort. Incorporating the entrainment mixing factor (the ratio of room contaminants entrained into a jet flow) in performance measurements is proposed and further studies are recommended to verify results herein and test whether this is general to other nozzle configurations.

  • 41.
    Kabanshi, Alan
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Yang, Bin
    Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden.
    Sörqvist, Patrik
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental psychology.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Occupants’ perception of air movements and air quality in a simulated classroom with an intermittent air supply system2019In: Indoor + Built Environment, ISSN 1420-326X, E-ISSN 1423-0070, Vol. 28, no 1, p. 63-76Article in journal (Refereed)
    Abstract [en]

    The study reported herein builds on occupant response to an intermittent air jet strategy (IAJS), which creates periodic airflow and non-isothermal conditions in the occupied zone.  Previous research has highlighted the benefits of IAJS on thermal climate and supports energy saving potential in view of human thermal perception of the indoor environment. In this study, the goal was to explore occupant acceptability of air movements and perceived indoor air quality, and to determine a way of assessing acceptable air movement conditions under IAJS. Thirty-six participants were exposed to twelve conditions: three room air temperatures (nominal: 22.5, 25.5 and 28.5 oC), each with varied air speeds (nominal: <0.15 m/s under mixing ventilation (MV), and 0.4, 0.6 and 0.8 m/s under IAJS) measured at the breathing height (1.1 m). The results show that participants preferred low air movements at lower temperatures and high air movements at higher temperatures. A model to predict percentage satisfied with intermittent air movements was developed, and predicts that about 87% of the occupants within a thermal sensation range of slightly cool (-0.5) to slightly warm (+0.5), in compliance with ASHRAE standard 55, will find intermittent air movements acceptable between 23.7 oC and 29.1 oC within a velocity range of 0.4 – 0.8 m/s.  IAJS also improved participants’ perception of air quality in conditions deemed poor under MV. The findings support the potential of IAJS as a primary ventilation system in high occupant spaces such as classrooms. 

  • 42.
    Khosravi Bakhtiari, Hossein
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology. Department of Construction, Gavlefastigheter Company, Gävle, Sweden.
    Akander, Jan
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Cehlin, Mathias
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Evaluation of Thermal Comfort in a Historic Building Refurbished to an Office Building with Modernized HVAC Systems2019In: Advances in Building Energy Research, ISSN 1751-2549, E-ISSN 1756-2201Article in journal (Refereed)
    Abstract [en]

    Envelopes with low thermal performance are common characteristics in European historic buildings, causing higher energy demand and insufficient thermal comfort. This paper presents the results of a study on indoor environmental quality (IEQ), with special focus on thermal comfort, in the historic City Hall of Gävle, Sweden, now used as an office building. There are two modern heat recovery ventilation systems with displacement ventilation supply devices. The district heating network heats the building via pre-heat supply air and radiators. Summer cooling comes from electric heat pump ejecting heat into the exhaust ventilation air. A building management system (BMS) controls the heating, ventilation and air-conditioning (HVAC) equipment. The methodology included on-site measurements, BMS data logging and evaluating the occupants’ perception of a summer and a winter period indoor environment using a standardized questionnaire. In conclusion, indoor environmental quality in this historic building is unsatisfactory. Stuffy air, too high, too low and varying room temperatures, lighting problems and noise are constant issues. Although it is equipped with modern ventilation systems, there are still possibilities for improving thermal comfort by improved control strategies, since upgrading the building’s envelope is not allowed according to the Swedish Building Regulations in historic buildings with heritage value.

  • 43.
    Korkmaz, Ebubekir
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Lundstöm, Jerry
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Böjprovning av spikplåtsskarvad träbalk2019Independent thesis Basic level (university diploma), 180 HE creditsStudent thesis
    Abstract [en]

    This thesis examines the bearing capacity, stiffness, shear and moment force of a continuous wooden beam and how the parameters of the beam changes when the beam is spliced ​​with nail plate. A literature study has been conducted to examine which studies have been carried out in this field.

    Construction timber is the most common wooden element for wooden constructions but has limitations in available lengths since the maximum length manufactured is 5400 mm. If larger lengths are required, splicing must occur or use of other materials.   The study examines a 2 series, a 3-point series (moment and shear) and a 4-point series (moment). Each series consists off 3 trials in each series to see how shear and moment force affect the strength. The study also shows which off the joints that gives the least strength. The samples are tested in a draw and pressure machine lying on 2 supports and with a point load for the 3-point method and 2-point loads for the 4-point method. In the trials pressure is applied until the beams break. The study investigates the lab results, fracture state and use state for the wooden beams being tested. The result of the study shows that a splicing will lower the wood's carrying capacity between 21-60% compared to a non-spliced beam for the 3-point method and a reduction of 40-66% compared to a non-spliced beam for the 4-point method. Despite the lowered bearing capacity all the experiments are still within the characteristic value and approved for use. A larger dimension on the nail plate would probably have given a better value.

  • 44.
    Kurdia, Ali
    et al.
    Högskolan Dalarna, Borlänge, Sweden.
    Gomes, João
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Pius, George
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Ollas, Patrik
    RISE Research Institutes of Sweden, Borås, Sweden.
    Olsson, Olle
    Absolicon, Gävle, Sweden.
    Quasi-Dynamic Testing of a Novel Concentrating Photovoltaic Solar Collector According to ISO 9806:20132018In: PROCEEDINGS OF THE ISES EUROSUN 2018 CONFERENCE - 12TH INTERNATIONAL CONFERENCE ON SOLAR ENERGY FOR BUILDINGS AND INDUSTRY / [ed] Haberle, A., INTL SOLAR ENERGY SOC , 2018, p. 1262-1273Conference paper (Refereed)
    Abstract [en]

    Testing and certification of solar thermal collectors has been widely researched and improved over the years, however, many of the developments in the test standards has been focused primarily on generic flat plate collectors. In this study, the focus was on depicting the applicability of the current standard in characterizing the performance of a novel concentrating solar collector of design. The applicability of the Quasi-Dynamic Testing (QDT) method for collector certification, by the ISO 9806:2013, is studied to be used in characterizing the novel concentrating PVT collector, and to point out the weaknesses observed, and essential additions required.

  • 45.
    La Fleur, Lina
    et al.
    Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Rohdin, Patrik
    Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Moshfegh, Bahram
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology. Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Energy renovation versus demolition and construction of a new building—a comparative analysis of a Swedish multi-family building2019In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, no 11, article id 2218Article in journal (Refereed)
    Abstract [en]

    This study addresses the life cycle costs (LCC) of energy renovation, and the demolition and construction of a new building. A comparison is made between LCC optimal energy renovations of four different building types with thermal performance, representing Swedish constructions from the 1940s, 1950s, 1960s, and 1970s, as well as the demolition of the building and construction of a new building that complies with the Swedish building code. A Swedish multi-family building from the 1960s is used as a reference building. LCC optimal energy renovations are identified with energy saving targets ranging between 10% and 70%, in addition to the lowest possible life cycle cost. The analyses show that an ambitious energy renovation is not cost-optimal in any of the studied buildings, if achieving the lowest LCC is the objective function. The cost of the demolition and construction of a new building is higher compared to energy renovation to the same energy performance. The higher rent in new buildings does not compensate for the higher cost of new construction. A more ambitious renovation is required in buildings that have a shape factor with a high internal volume to heated floor area ratio. © 2019 by the authors.

  • 46.
    La Fleur, Lina
    et al.
    Linköpings universitet.
    Rohdin, Patrik
    Linköpings universitet.
    Moshfegh, Bahram
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology. Linköpings universitet.
    Investigating cost-optimal energy renovation of a multifamily building in Sweden2019In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 203, article id 109438Article in journal (Refereed)
    Abstract [en]

    A significant reduction in energy use in the building stock is a major challenge for the future, and doing this in a cost-effective manner is important. This study uses an optimization approach to identify life cycle cost (LCC) optimal energy efficiency measures (EEMs) to implement as part of a renovation of a multifamily building in Sweden. The studied building is a multifamily building with a lightweight concrete construction and an exhaust air ventilation system, built in 1961. The optimization tool OPERA-MILP is used. The energy renovation approaches are compared to both the performed energy renovation of the building and a validated dynamic energy simulation model in IDA ICE 4.8. The results show that under the given framework conditions and assumptions it is not cost-optimal to improve the thermal performance of the building envelope or to implement heat recovery ventilation measures to reduce the space heating demand in the building when considering a life cycle of 40 years. Balanced mechanical ventilation system with heat recovery is cost-effective when an energy saving target of 40% is introduced. The energy renovation of the building has a slightly higher LCC than the cost-optimal level, and it would have been more cost-effective to add more insulation to the façade instead of the attic to achieve the same level of energy saving. A sensitivity analysis has been performed to reveal the effect of the discount rate, energy price, cost of EEMs, thermal properties of the building envelope and windows’ solar heat gain factors on the LCC.

  • 47.
    Lanca, Miguel
    et al.
    Instituto Superior Técnico, Lisbon University, Portugal.
    Gomes, João
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Hayati, Abolfazl
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Numerical Simulation of the Thermal Performance of Four Concentrating Collectors with Bifacial PV Cells2018In: PROCEEDINGS OF THE ISES EUROSUN 2018 CONFERENCE - 12TH INTERNATIONAL CONFERENCE ON SOLAR ENERGY FOR BUILDINGS AND INDUSTRY / [ed] Haberle, A., INTL SOLAR ENERGY SOC , 2018, p. 810-821Conference paper (Refereed)
    Abstract [en]

    Bifacial photovoltaic cells can produce electricity from the incoming solar radiation on both sides. Used in combination with concentrating solar technology, bifacial photovoltaic cells can see its electrical output further augmented, thus decreasing the cost per kWh. It is known, however, that the efficiency reduction when these cells are exposed to increased temperatures is a relevant factor. This can happen, for example, when they are mounted on a glassed collector or receiver. In this study, a thermal analysis is carried out on four prototypes of concentrating collectors with bifacial PV cells. Results show that, as expected, when glass and gables are removed from the collector, much better heat dissipation is achieved, thus resulting in favorable cell operation conditions.

  • 48.
    Lane, Anna-Lena
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology. RISE Research Institutes of Sweden.
    Boork, Magdalena
    RISE Research Institutes of Sweden.
    Thollander, Patrik
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Barriers, driving forces and non-energy benefits for battery storage in photovoltaic (PV) systems in modern agriculture2019In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, no 18, article id 3568Article in journal (Refereed)
    Abstract [en]

    Battery storage has been highlighted as one way to increase the share of renewables in energy systems. The use of local battery storage is also beneficial when reducing power variations in the grid, thereby contributing to more robust and cost-effective energy systems. The purpose of this paper is to investigate barriers, drivers and non-energy benefits (NEB) for investments in battery storage in photovoltaic systems (PV) in the context of farmers with PV systems in Sweden. The study is based on a questionnaire about barriers, driving forces and NEB for investment in battery storage connected to PV. The questionnaire was sent to farmers in Sweden who already have photovoltaics installed and about 100 persons answered, a response rate of 59%. The major barriers found are related to the technical and economic risks of investing in battery storage. One of the main conclusions is that the highest-ranked driver, i.e., to use a larger part of the produced electricity oneself, turns out to be the highest priority for the grid-owner seeking to reduce the need for extensive investments in the grid. The primary NEBs found were the possibility of becoming independent from grid electricity.

  • 49.
    Larsson, Erik
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Småskalig kraftvärmeproduktion för ett medelstort svenskt industriföretag: Potentialen för konventionell Rankinecykel2019Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The emissions of greenhouse gases need to decrease rapidly over the coming decades. Sweden has set the target to achieve net zero emissions by 2045. The industrial sector plays a crucial role in that conversion by reducing its energy needs and to convert from fossil fuels to renewables.

    This conversion will require a more robust and reliable energy system were todays centralized system has been supplemented by small decentralized production facilities. To produce heat and power closer to the consumers means less transmission losses. Small scale combined heat and power (CHP) production based on biofuels or excess heat could be a solution to reduce greenhouse gas emissions.

    The purpose of this paper is to evaluate the possibility for a mid-size Swedish industrial company to produce its own base load of heat and power with a conventional Rankine cycle. Also to evaluate the production costs depending on the size of the plant.

    The work has consisted of data collection from different manufacturers of steam turbines and steam boilers, a calculation model has been made in Excel to compare different plant sizes and in different operating scenarios. Economical evaluations has been made with the Pay-off method and the net present value method (NPV).

    The result shows that production costs for facilities with steam turbines in the size range of 10 – 100 kWel is well below the price of bought electricity and district heating. The economical evaluation generally shows on short pay-off times and positive NPV.

    A comparison of the CHP plants shows that the electric efficiency is low and the total efficiency sometimes can be lower than for the existing heat supplier of the company. This means that a switch to local CHP will have a negative impact from a system perspective, because of the increased use of primary energy resources.

    There is many parameters that affects the performance of a CHP plant but the most crucial is the operation time. To have a continuous operation over a major part of the year has a great impact on the economic performance. The low electric efficiency means that the major part of the savings gets on the heat production. This means that the CHP plant should be dimensioned to replace primarily the heat requirement.

  • 50.
    Lim, Eunsu
    et al.
    Toyo university, Tokyo, Japan.
    Chung, Juyeon
    Fukuoka Woman's University, Fukuoka, Japan.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
    Ito, Kazuhide
    Kyushu University, Fukuoka, Japan.
    Influence of chemical reactions and turbulent diffusion on the formation of local pollutant concentration distributions2020In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 168, article id 106487Article in journal (Refereed)
    Abstract [en]

    The mechanism of structure formation of non-uniform pollutant concentration distributions in indoor environments have been investigated over the past several decades to determine effective ventilation designs. In this study, numerical analyses of local pollutant concentration distributions in indoor environments are performed based on computational fluid dynamics techniques. In particular, the influence of gas phase chemical reactions and turbulent diffusion on the formation of the local pollutant concentration is parametrically analyzed, and the structures are quantitatively investigated using the index for ventilation efficiency, namely the net escape velocity (NEV) concept. The NEV concept represents the substantive velocity scale, combining advection and diffusion velocity of pollutant at a point, and functions as an index to determine the pollutant concentration at that point. Sensitivity analyses as functions of the first Damköhler number (Da) and the turbulent Schmidt number (Sct) were performed, and the influence of Sct on pollutant concentration distributions was more significant compared with that of Da. When Sct was changed from 0.5 to 1.0, the significant NEV increase, especially that in the stagnant flow region, could be attributed to the enhanced pollutant discharge efficiency due to turbulent diffusion in addition to convective flow. Thus, NEV could be used to quantitatively assess the changes in pollutant concentrations accompanying the change in Da or Sct. 

12 1 - 50 of 76
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf