hig.sePublications
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Health-Aware Control
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Electronics.ORCID iD: 0000-0001-7340-4629
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Health-aware control is essential for enhancing the longevity and efficiency of complex systems by integrating machine health metrics into production and maintenance planning. Traditional methods often treat production and maintenance as separate tasks, overlooking their interdependencies and thus failing to achieve optimal system performance. A key challenge in addressing this problem and considering the mutual effects of production and maintenance is establishing a cohesive framework that bidirectionally connects high-level decision-making with low-level operational control, optimizing production and maintenance at the same time. To address this challenge, the shop-floor machinery must be aware of its state of health (SOH), and the high-level planning should be able to include this information about SOH as an influential parameter in production planning. Doing this involves not only developing physically interpretable and cost-effective methods for identifying degradation but also implementing adaptive control strategies that respond to real-time conditions. Moreover, it is critical to study how lifespan control affects other system parameters to ensure optimal performance. To this end, this research first tackles the challenges in identifying and controlling degradation at the shop-floor level. It then bridges the gap between high- and low-level control by proposing a framework that integrates both levels into a unified, health-aware production and maintenance system. The thesis first explores the controllability of machine lifespan in interconnected systems. It then proposes methods for identifying degradation as a physically interpretable and controllable system parameter. The thesis further investigates the application of advanced control strategies such as model predictive control and linear quadratic regulators to manage degradation at both the low and high levels. A novel contribution is made by introducing the concept of state-action cost estimation for degradation cost, which links machine degradation directly to control actions, allowing for real-time degradation management without the need for costly physical modeling. The proposed approach is validated through simulations of various industrial systems and publicly accessible datasets, demonstrating its capability to optimize machine health and performance while maintaining product quality and minimizing degradation. Finally, bridging the gap between high-level strategic planning and low-level operational execution, this thesis provides a pathway to more efficient and resilient manufacturing systems where health-aware control is fully integrated.

Abstract [sv]

Statusmedveten reglering är väsentlig för att förbättra livslängden och effektiviteten hos komplexa system genom att integrera maskinens hälsotillstånd i produktions- och underhållsplaneringen. Traditionella metoder behandlar ofta produktion och underhåll som separata uppgifter, vilket bortser från deras ömsesidiga beroenden och därmed misslyckas med att uppnå optimal systemprestanda. En nyckelutmaning i att adressera detta problem och beakta de ömsesidiga effekterna av produktion och underhåll är att etablera ett sammanhängande ramverk som, i båda riktningar, kopplar samman beslutsfattande på hög nivå med operativ reglering på låg nivå, optimerar produktion och underhåll och gör det möjligt att följa planen vid varje tillfälle. För att möta denna utmaning måste maskinerna på verkstadsgolvet vara medvetna om sitt hälsotillstånd (SOH), och högnivåplaneringen måste kunna inkludera denna information som en inflytelserik parameter i produktionsplaneringen. Att göra detta innebär inte bara att utveckla fysiskt tolkningsbara och kostnadseffektiva metoder för att identifiera försämring av SOH utan också att implementera adaptiva styrstrategier som agerar i realtid. Dessutom är det kritiskt att studera hur styrning av livslängd påverkar andra systemparametrar för att säkerställa optimal prestanda. För detta ändamål adresserar denna forskning först begränsningar i identifiering och kontroll av förslitningar på verkstadsgolvnivå och fyller sedan gapet mellan hög- och lågnivåstyrning genom att föreslå ett ramverk som integrerar båda nivåerna i ett sammanhängande, statusmedvetet produktions och underhållssystem. Avhandlingen utforskar först styrbarheten av maskinens livslängd i sammankopplade system. Den föreslår sedan metoder för att identifiera försämring av SOH som en fysiskt tolkningsbar och kontrollerbar systemparameter. Avhandlingen undersöker vidare tillämpningen av avancerade styrstrategier såsom modellprediktiv styrning och linjär kvadratisk reglering för att hantera förslitning på både låg och hög nivå. Ett nyskapande bidrag görs genom att introducera konceptet med en kostnadsestimering av förslitning baserad på både maskinens tillstånd och handling, vilket länkar maskinförsämring direkt till styråtgärder. Det möjliggör i sin tur reglering i realtid av förslitningar utan behov av kostsam fysikalisk modellering. Den föreslagna metoden valideras genom simuleringar av olika industriella system och offentligt tillgängliga dataset. Resultaten visar dess förmåga att optimera maskinhälsa och prestanda samtidigt som produktkvaliteten upprätthålls och förslitningarna minimeras. Slutligen, genom att överbrygga gapet mellan högnivå strategisk planering och lågnivå operativ exekvering, erbjuder denna avhandling en väg till mer effektiva och resilienta tillverkningssystem där statusmedveten styrning är fullt integrerad.

Place, publisher, year, edition, pages
Gävle: Gävle University Press , 2024. , p. 70
Series
Doctoral thesisDoctoral thesis ; 53
Keywords [en]
health-aware control, degradation control, state-of-health control, lifespan planning, production and maintenance planning
Keywords [sv]
statusmedveten reglering, försämringskontroll, livslängdsplanering, produktions- och underhållsplanering
National Category
Control Engineering Reliability and Maintenance Production Engineering, Human Work Science and Ergonomics
Research subject
Intelligent Industry
Identifiers
URN: urn:nbn:se:hig:diva-45854ISBN: 978-91-89593-48-0 (print)ISBN: 978-91-89593-49-7 (electronic)OAI: oai:DiVA.org:hig-45854DiVA, id: diva2:1906139
Public defence
2025-01-15, 12:108, Kungsbäcksvägen 47, Gävle, 13:00
Opponent
Supervisors
Available from: 2024-12-17 Created: 2024-10-16 Last updated: 2025-01-20
List of papers
1. Finite Horizon Degradation Control of Complex Interconnected Systems
Open this publication in new window or tab >>Finite Horizon Degradation Control of Complex Interconnected Systems
2021 (English)In: Proceedings of the 17th IFAC Symposium on Information Control Problems in Manufacturing Budapest, Hungary, June 7-9, 2021, Elsevier , 2021, p. 319-324Conference paper, Published paper (Refereed)
Abstract [en]

In industrial production, it is of great importance to have high availability in its production equipment. Well-functioning maintenance is a significant factor for a high level of availability. This can be achieved by minimizing the number of reactive maintenance stops and optimizing scheduled maintenance. New methods for predictive maintenance provide a good opportunity for this, but most technologies that are available today are designed for individual sub-systems and they are rarely designed for a complex, interconnected machine. In the process industry, raw materials are rocessed into a finished product in a continuous flow through several subsystems and if one subsystem stops, the entire process flow stops. For these processes, it is more important to optimize the maintenance efforts for subsystems so maintenance can take place synchronized. This paper describes a method of supervised control that includes maintenance aspects; health parameters indicating deterioration are included in a MIMO controller. The method is verified in a simulation of a rolling mill with three rollers. The results show that it is possible to optimize the whole complex process including several subprocesses by using a health parameter as a control parameter and broadening the controllability of the system by dividing the workload in a way that all the subsystems reach the desired degradation level for maintenance in a desired optimum time. 

Place, publisher, year, edition, pages
Elsevier, 2021
Series
IFAC-PapersOnLine, ISSN 2405-8963 ; 54(1)
Keywords
Intelligent maintenance systems, Production planning and control, Model-driven systems engineering, Control of multi-scale systems, Design of fault tolerant/reliable systems
National Category
Control Engineering
Research subject
Intelligent Industry
Identifiers
urn:nbn:se:hig:diva-36246 (URN)10.1016/j.ifacol.2021.08.036 (DOI)000716937600054 ()2-s2.0-85120705793 (Scopus ID)
Conference
INCOM 2021, 17th IFAC Symposium on Information Control Problems in Manufacturing, Budapest, Hungary, June 7-9, 2021 
Note

The research project is financed by the European Commission within the European Regional Development Fund, the SwedishAgency for Economic and Regional Growth, Region Gävleborg, and the University of Gävle. 

Available from: 2021-06-15 Created: 2021-06-15 Last updated: 2024-11-20Bibliographically approved
2. Optimal Degradation-Aware Control Using Process-Controlled Sparse Bayesian Learning
Open this publication in new window or tab >>Optimal Degradation-Aware Control Using Process-Controlled Sparse Bayesian Learning
2023 (English)In: Processes, ISSN 2227-9717, Vol. 11, no 11, article id 3229Article in journal (Refereed) Published
Abstract [en]

Efficient production planning hinges on reducing costs and maintaining output quality, with machine degradation management as a key factor. The traditional approaches to control this degradation face two main challenges: high costs associated with physical modeling and a lack of physical interpretability in machine learning methods. Addressing these issues, our study presents an innovative solution focused on controlling the degradation, a common cause of machine failure. We propose a method that integrates machine degradation as a virtual state within the system model, utilizing relevance vector machine-based identification designed in a way that offers physical interpretability. This integration maximizes the machine’s operational lifespan. Our approach merges a physical machine model with a physically interpretable data-driven degradation model, effectively tackling the challenges in physical degradation modeling and accessibility to the system disturbance model. By embedding degradation into the system’s state-space model, we simplify implementation and address stability issues. The results demonstrate that our method effectively controls degradation and significantly increases the machine’s mean time to failure. This represents a significant advancement in production planning, offering a cost-effective and interpretable method for managing machine degradation.

Place, publisher, year, edition, pages
MDPI, 2023
Keywords
degradation control; fault control; improve production reliability; process-guided learning
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:hig:diva-43422 (URN)10.3390/pr11113229 (DOI)001115191500001 ()2-s2.0-85177874866 (Scopus ID)
Available from: 2023-12-11 Created: 2023-12-11 Last updated: 2024-10-16Bibliographically approved
3. Infinite-Horizon Degradation Control Based on Optimization of Degradation-Aware Cost Function
Open this publication in new window or tab >>Infinite-Horizon Degradation Control Based on Optimization of Degradation-Aware Cost Function
2024 (English)In: Mathematics, E-ISSN 2227-7390, Vol. 12, no 5, article id 729Article in journal (Refereed) Published
Abstract [en]

Controlling machine degradation enhances the accuracy of the remaining-useful-life estimation and offers the ability to control failure type and time. In order to achieve optimal degradation control, the system controller must be cognizant of the consequences of its actions by considering the degradation each action imposes on the system. This article presents a method for designing cost-aware controllers for linear systems, to increase system reliability and availability through degradation control. The proposed framework enables learning independent of the system's physical structure and working conditions, enabling controllers to choose actions that reduce system degradation while increasing system lifetime. To this end, the cost of each controller's action is calculated based on its effect on the state of health. A mathematical structure is proposed, to incorporate these costs into the cost function of the linear-quadratic controller, allowing for optimal feedback for degradation control. A simulation validates the proposed method, demonstrating that the optimal-control method based on the proposed cost function outperforms the linear-quadratic regulator in several ways.

Place, publisher, year, edition, pages
MDPI, 2024
Keywords
reliability control, degradation control, state-of-health control, improve production reliability, fault control
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:hig:diva-43950 (URN)10.3390/math12050729 (DOI)001180985400001 ()2-s2.0-85187486451 (Scopus ID)
Available from: 2024-03-25 Created: 2024-03-25 Last updated: 2024-12-17Bibliographically approved
4. A framework for designing a degradation-aware controller based on empirical estimation of the state–action cost and model predictive control
Open this publication in new window or tab >>A framework for designing a degradation-aware controller based on empirical estimation of the state–action cost and model predictive control
2024 (English)In: Journal of manufacturing systems, ISSN 0278-6125, E-ISSN 1878-6642, Vol. 76, p. 599-613Article in journal (Refereed) Published
Abstract [en]

Controlling the machine’s state of health (SoH) increases the accuracy of the remaining useful life estimation and enables the control of the failure time by keeping the system operational until the desired maintenance time is reached. To achieve system reliability through SoH control, the system controller must consider the impact of its actions on other parameters, such as degradation. This article proposes a structure for designing degradation-aware controllers for systems with available physical models. A system using this approach can learn autonomously, irrespective of the system’s physical structure and degradation model, and opt for control actions that enhance the system’s reliability and availability. To this end, first, a method is proposed to compute the cost associated with the actions taken by the controller. Second, a new cost function is introduced that incorporates the costs associated with degradation into the cost function utilized in model predictive control. In the third step, dynamic programming and deterministic scheduling are used to calculate the optimal action based on the defined cost function. Finally, the proposed control method is validated through simulation, demonstrating its ability to effectively manage machine degradation and achieve optimal performance according to production and maintenance plans.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Degradation control, State–action cost estimation, Improve production reliability, Model predictive control
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:hig:diva-45429 (URN)10.1016/j.jmsy.2024.08.024 (DOI)001316916100001 ()2-s2.0-85202740460 (Scopus ID)
Funder
European Regional Development Fund (ERDF), 220203291Swedish Agency for Economic and Regional Growth, 20202943
Available from: 2024-09-09 Created: 2024-09-09 Last updated: 2024-10-16Bibliographically approved
5. Effective machine lifespan management using determined state–action cost estimation for multi-dimensional cost function optimization
Open this publication in new window or tab >>Effective machine lifespan management using determined state–action cost estimation for multi-dimensional cost function optimization
2024 (English)In: Production & Manufacturing Research, ISSN 2169-3277, Vol. 12, no 1Article in journal (Refereed) Published
Abstract [en]

This study introduces a comprehensive framework designed to enhance production efficiency by integrating maintenance strategies, energy costs, and production specifications. This integration is achieved through a novel empirical method for estimating state–action costs, suitable for both machines with measurable and non-measurable states-of-health. We address the challenge of under-determination in state–action cost optimization by employing a k-means clustering approach, ensuring robustness and applicability. Utilizing an adapted SARSA algorithm, our framework optimally controls shop-floor machinery to minimize the global cost function. The efficacy of the state–action cost estimation method is validated using NASA’s C-MAPSS dataset. Additionally, the optimization strategy is further corroborated through its successful implementation in an autonomous mining cart model on the shop floor. Our results highlight the framework’s ability to optimize machine lifetime and production processes effectively, providing tailored solutions that adapt to varying operational conditions without depending on predefined machine degradation models and costs.

Place, publisher, year, edition, pages
Taylor & Francis, 2024
National Category
Control Engineering
Research subject
Intelligent Industry
Identifiers
urn:nbn:se:hig:diva-45838 (URN)10.1080/21693277.2024.2383656 (DOI)001284125100001 ()2-s2.0-85200477498 (Scopus ID)
Available from: 2024-10-15 Created: 2024-10-15 Last updated: 2024-12-17Bibliographically approved

Open Access in DiVA

fulltext(1467 kB)60 downloads
File information
File name FULLTEXT01.pdfFile size 1467 kBChecksum SHA-512
263c2383786775ce2ee622f860e960f83c36d558a6c08f3648013bbb46587b9a8b33adac0df646481709f61ab2c8de2cfde329b9e21948eadaf4530fae21785c
Type fulltextMimetype application/pdf

Authority records

Hosseinzadeh Dadash, Amirhossein

Search in DiVA

By author/editor
Hosseinzadeh Dadash, Amirhossein
By organisation
Electronics
Control EngineeringReliability and MaintenanceProduction Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar
Total: 60 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 227 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf