hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cooling demand reduction approaches for typical buildings in a future city district in mid-Sweden
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology. (Energisystem)ORCID iD: 0000-0003-1832-9827
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.ORCID iD: 0000-0002-4007-3074
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.ORCID iD: 0000-0001-9076-0801
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology. (Energisystem)ORCID iD: 0000-0003-2023-689x
2021 (English)In: Proceedings of Building Simulation 2021: 17th International Conference of IBPSA, International Building Performance Simulation Association (IBPSA), 2021, article id 30327Conference paper, Published paper (Refereed)
Abstract [en]

The increase in population and living standards, as well as global warming and heatwaves due to climate change, have created a challenge to meet the cooling demand in buildings. In this study, the cooling requirement for a multifamily building through simulations in a future city district in central-Sweden was determined. Different air supply set point  strategies, window to floor ratio and building rotations were employed to minimize the cooling requirements. The building was modelled so as to meet the Nearly Zero Energy Building (NZEB) requirements. Window to floor ratio of 10% with a piecewise proportional controller for supply temperature was depicted as appropriate for the building. A 45° rotation of the building increased the cooling demand. The cooling demand of the building increased by employing the extreme climate condition, as a representative for future climate, with factors 3.8 and 6.4 for cooling set points 25°C and 27°C for window to floor ratio 10%. This implies the need for a resilient building to withstand future climate conditions. The requirement to update the climate files was also used for decision making in the design process and building regulation. 

Place, publisher, year, edition, pages
International Building Performance Simulation Association (IBPSA), 2021. article id 30327
National Category
Energy Engineering
Research subject
Sustainable Urban Development
Identifiers
URN: urn:nbn:se:hig:diva-36994OAI: oai:DiVA.org:hig-36994DiVA, id: diva2:1590689
Conference
Building Simulation 2021
Available from: 2021-09-03 Created: 2021-09-03 Last updated: 2025-10-02Bibliographically approved
In thesis
1. Future Climate and Rising Cooling Demands: Energy Solutions and Overheating Resistivity for a Warmer Sweden
Open this publication in new window or tab >>Future Climate and Rising Cooling Demands: Energy Solutions and Overheating Resistivity for a Warmer Sweden
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the summer of 2018, Sweden experienced an intense and prolonged heatwave, marked by high temperatures across the country, highlighting the future need for space cooling in residential buildings. The increasing frequency and intensity of heatwaves, driven by climate change, pose significant challenges to the built environment, particularly concerning the energy demand for cooling and the maintenance of thermal comfort in homes. This thesis investigates the impact of future climate conditions on building energy performance, evaluates various cooling technologies, and assesses building resilience to overheating under mid-century climate scenarios. This study focuses on a future residential district in Gävle, Sweden, using projected climate files based on the 8.5 Representative Concentration Pathway (RCP) 8.5 scenario.

A range of cooling technologies were analyzed, including district cooling, absorption chillers, and compression chillers with and without photovoltaic (PV) systems. The performance of these technologies was evaluated based on their primary energy use, life cycle cost analysis (LCCA), and climate resilience using novel overheating resistivity metrics, such as the overheating escalation factor (αIOD) and Indoor Overheating Degree Signature Slope Ratio (ISSR). Climate projections for 2050 indicate substantial increases in cooling demand, with maximum temperatures rising by up to 4.5 ° C during heatwaves compared to current conditions.

The results demonstrate that compression chillers combined with PV systems represent the most energy-efficient and economically viable cooling solution, based on the boundary conditions and factors considered in this study. However, district cooling remains a competitive option for large-scale developments, benefiting from economies of scale. Absorption chillers were found to be suboptimal because of their high energy use and higher life cycle costs.

Furthermore, The study reveals that building typology influences resistance to overheating, with block buildings exhibiting better performance due to their compact design. Resilience metrics such as αIOD and ISSR underscore the importance of integrating adaptive comfort models and passive design strategies to improve building resilience under future climate conditions.

This work provides critical insights into the selection of cost-effective and resilient cooling technologies while promoting sustainable building practices. The findings contribute to the growing body of research on climate adaptation in the built environment, guiding future policy and design strategies to mitigate the impacts of extreme heat in urban areas.

Abstract [sv]

Sommaren 2018 drabbades Sverige av en intensiv och långvarig värmebölja med rekordhöga temperaturer över hela landet. Denna händelse belyser behovet av kylsystem i bostäder framöver. Den ökande frekvensen och intensiteten av värmeböljor, som drivs av klimatförändringar, utgör betydande utmaningar för den byggda miljön, särskilt vad gäller energibehov för kylning och inomhustemperaturkomfort. Denna avhandling undersöker hur framtida klimatförhållanden påverkar byggnaders energiprestanda, utvärderar olika kylteknologier och analyserar byggnaders motståndskraft mot överhettning i scenarier för mitten av seklet.

Studien fokuserar på ett framtida bostadsområde i Gävle, Sverige, och använder klimatfiler baserade på det representativa koncentrationsscenariot (RCP) 8.5. Ett antal kylteknologier analyserades, inklusive fjärrkyla, absorptionskylmaskiner samt kompressorkylmaskiner, både med och utan solcellsanläggningar (PV-system). Prestandan hos dessa teknologier utvärderades utifrån deras primära energianvändning, livscykelkostnadsanalys (LCCA) och klimattålighet med hjälp av innovativa mått för överhettningsresistens, såsom överhettningens eskalationsfaktor (αIOD) och Indoor Overheating Degree Signature Slope Ratio (ISSR). Klimatprognoser för år 2050 visar betydande ökningar i kylbehovet, med maximala temperaturer som kan stiga med upp till 4,5°C under värmeböljor jämfört med dagens nivåer.

Resultaten visar att kompressorkylmaskiner kombinerade med solcellsanläggningar är den mest energieffektiva och ekonomiskt fördelaktiga lösningen inom studiens ramar. Fjärrkyla framstår dock som ett konkurrenskraftigt alternativ för storskaliga utvecklingsprojekt, tack vare dess stordriftsfördelar. Absorptionskylmaskiner visade sig vara mindre optimala på grund av hög energiförbrukning och högre livscykelkostnader.

Studien avslöjar dessutom att byggnadstyp har en betydande inverkan på motståndskraften mot överhettning, där flerbostadshus presterar bättre tack vare sin kompakta design. Resiliensmått som αIOD och ISSR understryker vikten av att integrera adaptiva komfortmodeller och passiva designstrategier för att stärka byggnaders tålighet under framtida klimatförhållanden.

Arbetet ger viktiga insikter om val av kostnadseffektiva och resilienta kylteknologier samtidigt som det främjar hållbara byggnadspraxis. Resultaten bidrar till den växande forskningen om klimatanpassning inom den byggda miljön och ger vägledning för framtida policyer och designstrategier för att minska effekterna av extrem värme i urbana områden.

Place, publisher, year, edition, pages
Gävle: Gävle University Press, 2025. p. 69
Series
Doctoral thesis ; 56
Keywords
Future climate, Heat wave predictions, Building simulations, Life cycle cost analysis, Overheating resistivity, Absorption chiller, District cooling, Compression chillers, Framtida klimat, Värmeböljeprognoser, Byggnadssimuleringar, Livscykelkostnadsanalys, Motståndskraft mot överhettning, Absorptionskylare, Fjärrkyla, Kompressorkylare
National Category
Energy Systems
Identifiers
urn:nbn:se:hig:diva-46089 (URN)978-91-89593-54-1 (ISBN)978-91-89593-55-8 (ISBN)
Public defence
2025-02-06, 12:108, Kungsbäcksvägen 47, Gävle, 09:00 (English)
Opponent
Supervisors
Available from: 2025-01-10 Created: 2024-11-28 Last updated: 2025-10-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

conference website

Authority records

Sayadi, SanaHayati, AbolfazlAkander, JanCehlin, Mathias

Search in DiVA

By author/editor
Sayadi, SanaHayati, AbolfazlAkander, JanCehlin, Mathias
By organisation
Energy Systems and Building Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 394 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf